Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the electric force acting between two charges, we use Coulomb's law, which states:
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
Where:
- \( F \) is the magnitude of the electric force.
- \( k \) is Coulomb's constant, approximately \( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the magnitudes of the charges.
- \( r \) is the distance between the charges.
Given values:
- \( q_1 = 0.0042 \, \text{C} \)
- \( q_2 = -0.0050 \, \text{C} \)
- \( r = 0.0030 \, \text{m} \)
Now, calculate the magnitude of the force:
1. Calculate the product of the charges:
[tex]\[ q_1 \times q_2 = 0.0042 \times -0.0050 = -0.000021 \, \text{C}^2 \][/tex]
2. Square the distance \( r \):
[tex]\[ r^2 = (0.0030)^2 = 0.000009 \, \text{m}^2 \][/tex]
3. Apply Coulomb's law:
[tex]\[ F = 8.99 \times 10^9 \times \frac{-0.000021}{0.000009} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{-0.000021}{0.000009} = -2.3333 \][/tex]
5. Continue with the calculation:
[tex]\[ F = 8.99 \times 10^9 \times (-2.3333) \][/tex]
[tex]\[ F \approx -2.1 \times 10^{10} \, \text{N} \][/tex]
The calculated electric force is approximately \( -2.1 \times 10^{10} \, \text{N} \). The negative sign indicates that the force is attractive since one of the charges is positive and the other is negative.
Therefore, the correct answer is:
C. [tex]\(-2.1 \times 10^{10} \, \text{N} \)[/tex]
[tex]\[ F = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
Where:
- \( F \) is the magnitude of the electric force.
- \( k \) is Coulomb's constant, approximately \( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \).
- \( q_1 \) and \( q_2 \) are the magnitudes of the charges.
- \( r \) is the distance between the charges.
Given values:
- \( q_1 = 0.0042 \, \text{C} \)
- \( q_2 = -0.0050 \, \text{C} \)
- \( r = 0.0030 \, \text{m} \)
Now, calculate the magnitude of the force:
1. Calculate the product of the charges:
[tex]\[ q_1 \times q_2 = 0.0042 \times -0.0050 = -0.000021 \, \text{C}^2 \][/tex]
2. Square the distance \( r \):
[tex]\[ r^2 = (0.0030)^2 = 0.000009 \, \text{m}^2 \][/tex]
3. Apply Coulomb's law:
[tex]\[ F = 8.99 \times 10^9 \times \frac{-0.000021}{0.000009} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{-0.000021}{0.000009} = -2.3333 \][/tex]
5. Continue with the calculation:
[tex]\[ F = 8.99 \times 10^9 \times (-2.3333) \][/tex]
[tex]\[ F \approx -2.1 \times 10^{10} \, \text{N} \][/tex]
The calculated electric force is approximately \( -2.1 \times 10^{10} \, \text{N} \). The negative sign indicates that the force is attractive since one of the charges is positive and the other is negative.
Therefore, the correct answer is:
C. [tex]\(-2.1 \times 10^{10} \, \text{N} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.