Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the limit \(\lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2}\), we will use a detailed step-by-step approach.
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
### Step 1: Understand the Components
We need to find the limit of the function \(\frac{(e^x - 1) \tan{x}}{x^2}\) as \(x\) approaches 0.
### Step 2: Break Down the Expression
Firstly, let's analyze the individual components of the expression:
- \(e^x - 1\)
- \(\tan{x}\)
- \(x^2\)
### Step 3: Use Series Expansions
For small values of \(x\), we can use the series expansions of these functions to approximate their behavior near 0.
- The Taylor series expansion for \(e^x\) around \(x = 0\) is:
[tex]\[ e^x \approx 1 + x + \frac{x^2}{2!} + O(x^3) \][/tex]
Hence,
[tex]\[ e^x - 1 \approx x + \frac{x^2}{2} + O(x^3) \][/tex]
- The Taylor series expansion for \(\tan{x}\) around \(x = 0\) is:
[tex]\[ \tan{x} \approx x + \frac{x^3}{3} + O(x^5) \][/tex]
### Step 4: Substitute the Series Expansions
Now, substitute these series expansions into the original limit expression:
[tex]\[ \frac{(e^x - 1) \tan{x}}{x^2} \approx \frac{\left(x + \frac{x^2}{2} + O(x^3)\right) \left(x + \frac{x^3}{3} + O(x^5)\right)}{x^2} \][/tex]
### Step 5: Simplify the Expression
Let's multiply the series expansions in the numerator:
[tex]\[ \left(x + \frac{x^2}{2}\right) \left(x + \frac{x^3}{3}\right) \approx x^2 + \frac{x^4}{3} + \frac{x^2 \cdot x}{2} + O(x^5) \][/tex]
[tex]\[ = x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5) \][/tex]
Now, divide each term in the numerator by \(x^2\):
[tex]\[ \frac{x^2 + \frac{x^3}{2} + \frac{x^4}{3} + O(x^5)}{x^2} = 1 + \frac{x}{2} + \frac{x^2}{3} + O(x^3) \][/tex]
### Step 6: Evaluate the Limit
As \(x \to 0\), all the higher-order terms \(O(x)\), \(O(x^2)\), etc., will approach 0. Hence, the dominant term is just 1.
Therefore,
[tex]\[ \lim_{x \to 0} \frac{(e^x - 1) \tan{x}}{x^2} = 1 \][/tex]
So the limit is [tex]\(\boxed{1}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.