Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the probability that both you and your friend are chosen as contestants from the 6 people in the front row, let's follow these steps:
1. Determine the total number of ways to choose 3 people from the 6 people:
The total number of ways to choose 3 people out of 6 is calculated using the combination formula:
[tex]\[ {}_6C_3 = \frac{6!}{3!(6-3)!} = 20 \][/tex]
Therefore, there are 20 ways to choose 3 people out of 6.
2. Determine the number of favorable ways where you and your friend are chosen:
If you and your friend are already chosen, we need to select 1 more person from the remaining 4 people. The number of ways to choose 1 person from 4 is calculated using:
[tex]\[ {}_4C_1 = \frac{4!}{1!(4-1)!} = 4 \][/tex]
So, there are 4 ways to choose the remaining 1 person from the 4 people after you and your friend have already been selected.
3. Calculate the probability:
The probability that both you and your friend are chosen is the ratio of the number of favorable outcomes to the total number of outcomes. Hence, the probability \( P \) is:
[tex]\[ P = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{4}{20} = 0.2 \][/tex]
So, the answer is [tex]\( A. \frac{4}{20} \)[/tex].
1. Determine the total number of ways to choose 3 people from the 6 people:
The total number of ways to choose 3 people out of 6 is calculated using the combination formula:
[tex]\[ {}_6C_3 = \frac{6!}{3!(6-3)!} = 20 \][/tex]
Therefore, there are 20 ways to choose 3 people out of 6.
2. Determine the number of favorable ways where you and your friend are chosen:
If you and your friend are already chosen, we need to select 1 more person from the remaining 4 people. The number of ways to choose 1 person from 4 is calculated using:
[tex]\[ {}_4C_1 = \frac{4!}{1!(4-1)!} = 4 \][/tex]
So, there are 4 ways to choose the remaining 1 person from the 4 people after you and your friend have already been selected.
3. Calculate the probability:
The probability that both you and your friend are chosen is the ratio of the number of favorable outcomes to the total number of outcomes. Hence, the probability \( P \) is:
[tex]\[ P = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{4}{20} = 0.2 \][/tex]
So, the answer is [tex]\( A. \frac{4}{20} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.