Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Alright, let's break this down step-by-step.
We start with the expression \(\left(9^{-2}\right)^8\).
To simplify this, we will use the power of a power rule, which states: \((a^m)^n = a^{m \cdot n}\).
1. First, identify the base and the exponents:
- Base: \(9\)
- Exponents: \(-2\) and \(8\)
2. Apply the power of a power rule:
[tex]\[ \left(9^{-2}\right)^8 = 9^{-2 \cdot 8} \][/tex]
3. Multiply the exponents:
[tex]\[ 9^{-2 \cdot 8} = 9^{-16} \][/tex]
4. Express \(9^{-16}\) in a form that makes it easier to compare with the given options. Negative exponents indicate division (reciprocals), so we recast \(9^{-16}\) as follows:
[tex]\[ 9^{-16} = \frac{1}{9^{16}} \][/tex]
Thus, the expression \(\left(9^{-2}\right)^8\) simplifies to \(\frac{1}{9^{16}}\).
Now, let's identify which option this matches:
A. \(-81^{32}\): This does not match our simplified expression.
B. \(\frac{1}{9^{16}}\): This matches perfectly with our simplified expression.
C. \(\frac{1}{9^{10}}\): This does not match.
D. \(81^8\): This also does not match.
Therefore, the correct answer is:
B [tex]\(\frac{1}{9^{16}}\)[/tex]
We start with the expression \(\left(9^{-2}\right)^8\).
To simplify this, we will use the power of a power rule, which states: \((a^m)^n = a^{m \cdot n}\).
1. First, identify the base and the exponents:
- Base: \(9\)
- Exponents: \(-2\) and \(8\)
2. Apply the power of a power rule:
[tex]\[ \left(9^{-2}\right)^8 = 9^{-2 \cdot 8} \][/tex]
3. Multiply the exponents:
[tex]\[ 9^{-2 \cdot 8} = 9^{-16} \][/tex]
4. Express \(9^{-16}\) in a form that makes it easier to compare with the given options. Negative exponents indicate division (reciprocals), so we recast \(9^{-16}\) as follows:
[tex]\[ 9^{-16} = \frac{1}{9^{16}} \][/tex]
Thus, the expression \(\left(9^{-2}\right)^8\) simplifies to \(\frac{1}{9^{16}}\).
Now, let's identify which option this matches:
A. \(-81^{32}\): This does not match our simplified expression.
B. \(\frac{1}{9^{16}}\): This matches perfectly with our simplified expression.
C. \(\frac{1}{9^{10}}\): This does not match.
D. \(81^8\): This also does not match.
Therefore, the correct answer is:
B [tex]\(\frac{1}{9^{16}}\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.