Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equilibrium constant \( K_c \) for the given reaction at equilibrium, we can use the equilibrium concentrations given and the formula for the equilibrium constant for the reaction:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.