Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the problems given the quadratic equation \( y = x^2 + 2x - 8 \).
### 1a) Does the parabola open up or down?
The general form for a quadratic equation is \( y = ax^2 + bx + c \).
In our equation, \( y = x^2 + 2x - 8 \):
- The coefficient \( a \) of \( x^2 \) is 1.
- The coefficient \( b \) of \( x \) is 2.
- The constant term \( c \) is -8.
To determine whether the parabola opens up or down, we look at the coefficient \( a \):
- If \( a > 0 \), the parabola opens up.
- If \( a < 0 \), the parabola opens down.
Here, \( a = 1 \), which is greater than 0. Therefore, the parabola opens up.
### 1b) Find the vertex using the formula \( x = \frac{-b}{2a} \):
The vertex form of a parabola can be found by using the formula for the x-coordinate of the vertex:
[tex]\[ x = \frac{-b}{2a} \][/tex]
For our equation \( y = x^2 + 2x - 8 \):
- \( a = 1 \)
- \( b = 2 \)
Plugging these values into the formula:
[tex]\[ x = \frac{-2}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2}{2} \][/tex]
[tex]\[ x = -1 \][/tex]
Now we need to find the y-coordinate by substituting \( x = -1 \) back into the original equation:
[tex]\[ y = (-1)^2 + 2(-1) - 8 \][/tex]
[tex]\[ y = 1 - 2 - 8 \][/tex]
[tex]\[ y = -9 \][/tex]
So, the vertex of the parabola is:
[tex]\[ (-1, -9) \][/tex]
### Summary:
1. The parabola opens up.
2. The vertex is at the point (-1, -9), found by calculating [tex]\(\ x = \frac{-b}{2a}\)[/tex] and substituting back to find the y-value.
### 1a) Does the parabola open up or down?
The general form for a quadratic equation is \( y = ax^2 + bx + c \).
In our equation, \( y = x^2 + 2x - 8 \):
- The coefficient \( a \) of \( x^2 \) is 1.
- The coefficient \( b \) of \( x \) is 2.
- The constant term \( c \) is -8.
To determine whether the parabola opens up or down, we look at the coefficient \( a \):
- If \( a > 0 \), the parabola opens up.
- If \( a < 0 \), the parabola opens down.
Here, \( a = 1 \), which is greater than 0. Therefore, the parabola opens up.
### 1b) Find the vertex using the formula \( x = \frac{-b}{2a} \):
The vertex form of a parabola can be found by using the formula for the x-coordinate of the vertex:
[tex]\[ x = \frac{-b}{2a} \][/tex]
For our equation \( y = x^2 + 2x - 8 \):
- \( a = 1 \)
- \( b = 2 \)
Plugging these values into the formula:
[tex]\[ x = \frac{-2}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2}{2} \][/tex]
[tex]\[ x = -1 \][/tex]
Now we need to find the y-coordinate by substituting \( x = -1 \) back into the original equation:
[tex]\[ y = (-1)^2 + 2(-1) - 8 \][/tex]
[tex]\[ y = 1 - 2 - 8 \][/tex]
[tex]\[ y = -9 \][/tex]
So, the vertex of the parabola is:
[tex]\[ (-1, -9) \][/tex]
### Summary:
1. The parabola opens up.
2. The vertex is at the point (-1, -9), found by calculating [tex]\(\ x = \frac{-b}{2a}\)[/tex] and substituting back to find the y-value.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.