At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Marie made her first error in Step 1. Let's break down the correct solution step-by-step:
### Step-by-Step Solution:
1. Given Expression: \(\left(x^{-3} y^2 \cdot x\right)^7\)
2. Combine the Powers of \(x\):
- The expression inside the parentheses needs to be simplified first.
- \(x^{-3} \cdot x = x^{-3 + 1} = x^{-2}\)
Therefore, the expression inside the parentheses becomes:
[tex]\[(x^{-2} y^2)\][/tex]
3. Apply the Exponent to Each Factor:
- Now, raise each term inside the parentheses to the power of 7.
- \((x^{-2})^7 = x^{-2 \cdot 7} = x^{-14}\)
- \((y^2)^7 = y^{2 \cdot 7} = y^{14}\)
So the expression becomes:
[tex]\[x^{-14} y^{14}\][/tex]
4. Combine the Powers:
- The simplified expression is now:
[tex]\[x^{-14} y^{14}\][/tex]
5. Final Answer:
- The given expression simplifies to \(x^{-14} y^{14}\).
- Written in standard form, \(x^{-14} y^{14}\) simply means:
[tex]\[ \frac{y^{14}}{x^{14}} \][/tex]
Therefore, the correct simplified version of the given expression is:
[tex]\[ \left(x^{-3} y^2 \cdot x\right)^7 = \frac{y^{14}}{x^{14}} \][/tex]
Thus, Marie's first error was in Step 1, where she incorrectly wrote [tex]\(\left(x^3 y^2 \cdot x\right)^7\)[/tex] instead of correctly simplifying the power of [tex]\(x\)[/tex] first as [tex]\(\left(x^{-2} y^2\right)^7\)[/tex].
### Step-by-Step Solution:
1. Given Expression: \(\left(x^{-3} y^2 \cdot x\right)^7\)
2. Combine the Powers of \(x\):
- The expression inside the parentheses needs to be simplified first.
- \(x^{-3} \cdot x = x^{-3 + 1} = x^{-2}\)
Therefore, the expression inside the parentheses becomes:
[tex]\[(x^{-2} y^2)\][/tex]
3. Apply the Exponent to Each Factor:
- Now, raise each term inside the parentheses to the power of 7.
- \((x^{-2})^7 = x^{-2 \cdot 7} = x^{-14}\)
- \((y^2)^7 = y^{2 \cdot 7} = y^{14}\)
So the expression becomes:
[tex]\[x^{-14} y^{14}\][/tex]
4. Combine the Powers:
- The simplified expression is now:
[tex]\[x^{-14} y^{14}\][/tex]
5. Final Answer:
- The given expression simplifies to \(x^{-14} y^{14}\).
- Written in standard form, \(x^{-14} y^{14}\) simply means:
[tex]\[ \frac{y^{14}}{x^{14}} \][/tex]
Therefore, the correct simplified version of the given expression is:
[tex]\[ \left(x^{-3} y^2 \cdot x\right)^7 = \frac{y^{14}}{x^{14}} \][/tex]
Thus, Marie's first error was in Step 1, where she incorrectly wrote [tex]\(\left(x^3 y^2 \cdot x\right)^7\)[/tex] instead of correctly simplifying the power of [tex]\(x\)[/tex] first as [tex]\(\left(x^{-2} y^2\right)^7\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.