Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's solve the problem step-by-step.
Given the function:
[tex]\[ y = \ln\left(e^{3x^2} - \cos^9(x^2 + 3)\right) \][/tex]
We need to find the derivative \(\frac{dy}{dx}\).
Step 1: Identify the outer function and the inner function.
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ y = \ln(u) \][/tex]
Step 2: Use the chain rule of differentiation.
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Since \( y = \ln(u) \),
[tex]\[ \frac{dy}{du} = \frac{1}{u} \][/tex]
Step 3: Differentiate the inner function \( u \) with respect to \( x \).
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ \frac{du}{dx} = \frac{d}{dx}\left(e^{3x^2}\right) - \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) \][/tex]
Step 4: Differentiate \( e^{3x^2} \) with respect to \( x \).
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = e^{3x^2} \cdot \frac{d}{dx}(3x^2) \][/tex]
[tex]\[ \frac{d}{dx}(3x^2) = 6x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = 6x \cdot e^{3x^2} \][/tex]
Step 5: Differentiate \( \cos^9(x^2 + 3) \) with respect to \( x \).
Using the chain rule again, let \( v = \cos(x^2 + 3) \), so \(\cos^9(x^2 + 3) = v^9\).
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9\cos^8(x^2 + 3) \cdot \frac{d}{dx}\left(\cos(x^2 + 3)\right) \][/tex]
Now, differentiate \( \cos(x^2 + 3) \):
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -\sin(x^2 + 3) \cdot \frac{d}{dx}(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}(x^2 + 3) = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -2x \sin(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9 \cdot \cos^8(x^2 + 3) \cdot (-2x \sin(x^2 + 3)) \][/tex]
[tex]\[ = -18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 6: Combine the results from Steps 4 and 5.
[tex]\[ \frac{du}{dx} = 6x \cdot e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 7: Substitute back into the chain rule expression.
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ = \frac{1}{e^{3x^2} - \cos^9(x^2 + 3)} \cdot (6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)) \][/tex]
[tex]\[ = \frac{6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Therefore, the derivative is:
[tex]\[ \frac{dy}{dx} = \frac{6x e^{3x^2} + 18x \sin(x^2 + 3) \cos^8(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Given the function:
[tex]\[ y = \ln\left(e^{3x^2} - \cos^9(x^2 + 3)\right) \][/tex]
We need to find the derivative \(\frac{dy}{dx}\).
Step 1: Identify the outer function and the inner function.
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ y = \ln(u) \][/tex]
Step 2: Use the chain rule of differentiation.
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Since \( y = \ln(u) \),
[tex]\[ \frac{dy}{du} = \frac{1}{u} \][/tex]
Step 3: Differentiate the inner function \( u \) with respect to \( x \).
[tex]\[ u = e^{3x^2} - \cos^9(x^2 + 3) \][/tex]
[tex]\[ \frac{du}{dx} = \frac{d}{dx}\left(e^{3x^2}\right) - \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) \][/tex]
Step 4: Differentiate \( e^{3x^2} \) with respect to \( x \).
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = e^{3x^2} \cdot \frac{d}{dx}(3x^2) \][/tex]
[tex]\[ \frac{d}{dx}(3x^2) = 6x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(e^{3x^2}\right) = 6x \cdot e^{3x^2} \][/tex]
Step 5: Differentiate \( \cos^9(x^2 + 3) \) with respect to \( x \).
Using the chain rule again, let \( v = \cos(x^2 + 3) \), so \(\cos^9(x^2 + 3) = v^9\).
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9\cos^8(x^2 + 3) \cdot \frac{d}{dx}\left(\cos(x^2 + 3)\right) \][/tex]
Now, differentiate \( \cos(x^2 + 3) \):
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -\sin(x^2 + 3) \cdot \frac{d}{dx}(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}(x^2 + 3) = 2x \][/tex]
So,
[tex]\[ \frac{d}{dx}\left(\cos(x^2 + 3)\right) = -2x \sin(x^2 + 3) \][/tex]
[tex]\[ \frac{d}{dx}\left(\cos^9(x^2 + 3)\right) = 9 \cdot \cos^8(x^2 + 3) \cdot (-2x \sin(x^2 + 3)) \][/tex]
[tex]\[ = -18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 6: Combine the results from Steps 4 and 5.
[tex]\[ \frac{du}{dx} = 6x \cdot e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3) \][/tex]
Step 7: Substitute back into the chain rule expression.
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ = \frac{1}{e^{3x^2} - \cos^9(x^2 + 3)} \cdot (6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)) \][/tex]
[tex]\[ = \frac{6x e^{3x^2} - 18x \cos^8(x^2 + 3) \sin(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Therefore, the derivative is:
[tex]\[ \frac{dy}{dx} = \frac{6x e^{3x^2} + 18x \sin(x^2 + 3) \cos^8(x^2 + 3)}{e^{3x^2} - \cos^9(x^2 + 3)} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.