Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given sets of numbers cannot represent the three sides of a triangle, we need to use the triangle inequality theorem. This theorem states that for any three sides \(a\), \(b\), and \(c\) to form a triangle, the following conditions must all be true:
1. \(a + b > c\)
2. \(a + c > b\)
3. \(b + c > a\)
Let's check each set of numbers:
1. \(\{7, 10, 15\}\)
- Check \(7 + 10 > 15\): \(17 > 15\) (True)
- Check \(7 + 15 > 10\): \(22 > 10\) (True)
- Check \(10 + 15 > 7\): \(25 > 7\) (True)
All conditions are satisfied, so this set can form a triangle.
2. \(\{5, 15, 20\}\)
- Check \(5 + 15 > 20\): \(20 \nless 20\) (False)
- Since this condition is false, the other conditions do not need to be checked.
This set does not satisfy the conditions of the triangle inequality theorem, so these numbers cannot form a triangle.
3. \(\{6, 15, 19\}\)
- Check \(6 + 15 > 19\): \(21 > 19\) (True)
- Check \(6 + 19 > 15\): \(25 > 15\) (True)
- Check \(15 + 19 > 6\): \(34 > 6\) (True)
All conditions are satisfied, so this set can form a triangle.
4. \(\{4, 12, 15\}\)
- Check \(4 + 12 > 15\): \(16 > 15\) (True)
- Check \(4 + 15 > 12\): \(19 > 12\) (True)
- Check \(12 + 15 > 4\): \(27 > 4\) (True)
All conditions are satisfied, so this set can form a triangle.
From this analysis, the set of numbers \(\{5, 15, 20\}\) cannot represent the three sides of a triangle.
So, the correct answer is:
○ {5, 15, 20}
1. \(a + b > c\)
2. \(a + c > b\)
3. \(b + c > a\)
Let's check each set of numbers:
1. \(\{7, 10, 15\}\)
- Check \(7 + 10 > 15\): \(17 > 15\) (True)
- Check \(7 + 15 > 10\): \(22 > 10\) (True)
- Check \(10 + 15 > 7\): \(25 > 7\) (True)
All conditions are satisfied, so this set can form a triangle.
2. \(\{5, 15, 20\}\)
- Check \(5 + 15 > 20\): \(20 \nless 20\) (False)
- Since this condition is false, the other conditions do not need to be checked.
This set does not satisfy the conditions of the triangle inequality theorem, so these numbers cannot form a triangle.
3. \(\{6, 15, 19\}\)
- Check \(6 + 15 > 19\): \(21 > 19\) (True)
- Check \(6 + 19 > 15\): \(25 > 15\) (True)
- Check \(15 + 19 > 6\): \(34 > 6\) (True)
All conditions are satisfied, so this set can form a triangle.
4. \(\{4, 12, 15\}\)
- Check \(4 + 12 > 15\): \(16 > 15\) (True)
- Check \(4 + 15 > 12\): \(19 > 12\) (True)
- Check \(12 + 15 > 4\): \(27 > 4\) (True)
All conditions are satisfied, so this set can form a triangle.
From this analysis, the set of numbers \(\{5, 15, 20\}\) cannot represent the three sides of a triangle.
So, the correct answer is:
○ {5, 15, 20}
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.