Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the integral \(\int \frac{1}{\sqrt{2x}} \, dx\), follow these steps:
1. Rewrite the Integral:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx \][/tex]
2. Simplify the Integrand:
Notice that \(\frac{1}{\sqrt{2x}}\) can be rewritten using properties of radicals.
[tex]\[ \frac{1}{\sqrt{2x}} = \frac{1}{\sqrt{2} \cdot \sqrt{x}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \][/tex]
3. Factor out the Constant:
Factor out the \(\frac{1}{\sqrt{2}}\), which is a constant, from the integral.
[tex]\[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx \][/tex]
4. Recognize the Standard Integral:
The integral \(\int \frac{1}{\sqrt{x}} \, dx\) is a standard integral that equals \(2\sqrt{x}\). Therefore,
[tex]\[ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \cdot 2\sqrt{x} = \frac{2\sqrt{x}}{\sqrt{2}} \][/tex]
5. Simplify the Expression:
Simplify the fraction \(\frac{2\sqrt{x}}{\sqrt{2}}\):
[tex]\[ \frac{2\sqrt{x}}{\sqrt{2}} = \frac{2}{\sqrt{2}} \cdot \sqrt{x} = \sqrt{2} \cdot \sqrt{x} = \sqrt{2x} \][/tex]
6. Include the Constant of Integration:
Don't forget the constant of integration \(C\), as it is an indefinite integral.
Combining all the steps together, you get:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx = \sqrt{2x} + C \][/tex]
Therefore, the solution to the integral \(\int \frac{1}{\sqrt{2x}} \, dx\) is:
[tex]\[ \sqrt{2x} + C \][/tex]
1. Rewrite the Integral:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx \][/tex]
2. Simplify the Integrand:
Notice that \(\frac{1}{\sqrt{2x}}\) can be rewritten using properties of radicals.
[tex]\[ \frac{1}{\sqrt{2x}} = \frac{1}{\sqrt{2} \cdot \sqrt{x}} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \][/tex]
3. Factor out the Constant:
Factor out the \(\frac{1}{\sqrt{2}}\), which is a constant, from the integral.
[tex]\[ \int \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx \][/tex]
4. Recognize the Standard Integral:
The integral \(\int \frac{1}{\sqrt{x}} \, dx\) is a standard integral that equals \(2\sqrt{x}\). Therefore,
[tex]\[ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{x}} \, dx = \frac{1}{\sqrt{2}} \cdot 2\sqrt{x} = \frac{2\sqrt{x}}{\sqrt{2}} \][/tex]
5. Simplify the Expression:
Simplify the fraction \(\frac{2\sqrt{x}}{\sqrt{2}}\):
[tex]\[ \frac{2\sqrt{x}}{\sqrt{2}} = \frac{2}{\sqrt{2}} \cdot \sqrt{x} = \sqrt{2} \cdot \sqrt{x} = \sqrt{2x} \][/tex]
6. Include the Constant of Integration:
Don't forget the constant of integration \(C\), as it is an indefinite integral.
Combining all the steps together, you get:
[tex]\[ \int \frac{1}{\sqrt{2x}} \, dx = \sqrt{2x} + C \][/tex]
Therefore, the solution to the integral \(\int \frac{1}{\sqrt{2x}} \, dx\) is:
[tex]\[ \sqrt{2x} + C \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.