Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the number of moles of oxygen (O₂) contained in a 3.6 L cylinder with a pressure of 2601 mmHg and a temperature of 31°C, we can use the Ideal Gas Law equation, \( PV = nRT \), where:
- \( P \) is pressure
- \( V \) is volume
- \( n \) is the number of moles
- \( R \) is the universal gas constant
- \( T \) is temperature in Kelvin
Here’s a step-by-step solution:
Step 1: Convert Temperature to Kelvin
We are given the temperature in Celsius (31°C), which we need to convert to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
So,
[tex]\[ T(K) = 31 + 273.15 = 304.15 \, K \][/tex]
Step 2: Convert Pressure to atm
We are given the pressure in mmHg (2601 mmHg), which we need to convert to atmospheres (atm). The conversion factor is 1 atm = 760 mmHg. The conversion formula is:
[tex]\[ P(\text{atm}) = \frac{P(\text{mmHg})}{760} \][/tex]
So,
[tex]\[ P(\text{atm}) = \frac{2601}{760} = 3.422368421 \, atm \][/tex]
Step 3: Use the Ideal Gas Law to Solve for n (number of moles)
[tex]\[ PV = nRT \][/tex]
We can rearrange the equation to solve for \( n \):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the values:
- \( P = 3.422368421 \, atm \)
- \( V = 3.6 \, L \)
- \( R = 0.0821 \, \text{L} \cdot \text{atm} / (\text{mol} \cdot \text{K}) \)
- \( T = 304.15 \, K \)
[tex]\[ n = \frac{(3.422368421 \, atm \times 3.6 \, L)}{(0.0821 \, \text{L} \cdot \text{atm} / (\text{mol} \cdot \text{K}) \times 304.15 \, K)} \][/tex]
[tex]\[ n = \frac{12.3205263156 \, \text{L} \cdot \text{atm}}{24.962215 \, \text{L} \cdot \text{atm/mole}} \][/tex]
[tex]\[ n = 0.4933990202 \, \text{moles} \][/tex]
Step 4: Round to Appropriate Significant Figures
Given the significant figures in the problem's measurements (2601 mmHg with four significant digits, 3.6 L with two significant digits, and 31°C with two significant digits), the final answer should be rounded to two significant digits.
Therefore, the number of moles of oxygen is:
[tex]\[ n ≈ 0.49 \, \text{moles} \][/tex]
So, the number of moles of oxygen (O₂) contained in the cylinder is approximately 0.49 moles.
- \( P \) is pressure
- \( V \) is volume
- \( n \) is the number of moles
- \( R \) is the universal gas constant
- \( T \) is temperature in Kelvin
Here’s a step-by-step solution:
Step 1: Convert Temperature to Kelvin
We are given the temperature in Celsius (31°C), which we need to convert to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(°C) + 273.15 \][/tex]
So,
[tex]\[ T(K) = 31 + 273.15 = 304.15 \, K \][/tex]
Step 2: Convert Pressure to atm
We are given the pressure in mmHg (2601 mmHg), which we need to convert to atmospheres (atm). The conversion factor is 1 atm = 760 mmHg. The conversion formula is:
[tex]\[ P(\text{atm}) = \frac{P(\text{mmHg})}{760} \][/tex]
So,
[tex]\[ P(\text{atm}) = \frac{2601}{760} = 3.422368421 \, atm \][/tex]
Step 3: Use the Ideal Gas Law to Solve for n (number of moles)
[tex]\[ PV = nRT \][/tex]
We can rearrange the equation to solve for \( n \):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the values:
- \( P = 3.422368421 \, atm \)
- \( V = 3.6 \, L \)
- \( R = 0.0821 \, \text{L} \cdot \text{atm} / (\text{mol} \cdot \text{K}) \)
- \( T = 304.15 \, K \)
[tex]\[ n = \frac{(3.422368421 \, atm \times 3.6 \, L)}{(0.0821 \, \text{L} \cdot \text{atm} / (\text{mol} \cdot \text{K}) \times 304.15 \, K)} \][/tex]
[tex]\[ n = \frac{12.3205263156 \, \text{L} \cdot \text{atm}}{24.962215 \, \text{L} \cdot \text{atm/mole}} \][/tex]
[tex]\[ n = 0.4933990202 \, \text{moles} \][/tex]
Step 4: Round to Appropriate Significant Figures
Given the significant figures in the problem's measurements (2601 mmHg with four significant digits, 3.6 L with two significant digits, and 31°C with two significant digits), the final answer should be rounded to two significant digits.
Therefore, the number of moles of oxygen is:
[tex]\[ n ≈ 0.49 \, \text{moles} \][/tex]
So, the number of moles of oxygen (O₂) contained in the cylinder is approximately 0.49 moles.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.