Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Simplify.

[tex]\[ -2i \sqrt{-12} \][/tex]

Enter your answer, in simplest radical form, in the box.
[tex]\[\square\][/tex]


Sagot :

To simplify the expression \(-2i \sqrt{-12}\), follow these steps:

1. Break Down the Square Root of the Negative Number:
Recognize that \( \sqrt{-12} \) can be broken down as \( \sqrt{12 \cdot -1} \). This can be further simplified using the property of square roots:
[tex]\[ \sqrt{12 \cdot -1} = \sqrt{12} \cdot \sqrt{-1} \][/tex]

2. Simplify the Imaginary Unit:
Recall that \( \sqrt{-1} \) is defined as \( i \). So,
[tex]\[ \sqrt{-12} = \sqrt{12} \cdot i \][/tex]

3. Substitute Back into the Expression:
Substitute \( \sqrt{-12} = \sqrt{12} \cdot i \) back into the original expression:
[tex]\[ -2i \sqrt{-12} = -2i (\sqrt{12} \cdot i) \][/tex]

4. Combine Like Terms:
When you multiply \( -2i \) and \( \sqrt{12} \cdot i \), you focus first on multiplying the imaginary units:
[tex]\[ -2i \cdot i \cdot \sqrt{12} \][/tex]
Given that \( i \cdot i = i^2 \), and knowing that \( i^2 = -1 \):
[tex]\[ -2i^2 \cdot \sqrt{12} = -2 \cdot (-1) \cdot \sqrt{12} = 2 \cdot \sqrt{12} \][/tex]

5. Simplify the Radicand:
The term \( \sqrt{12} \) can be further simplified by recognizing that \( 12 = 4 \cdot 3 \), and \( 4 \) is a perfect square:
[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \][/tex]

6. Combine All Parts:
Substitute \( \sqrt{12} = 2\sqrt{3} \) back into the expression \( 2 \cdot \sqrt{12} \):
[tex]\[ 2 \cdot \sqrt{12} = 2 \cdot 2\sqrt{3} = 4\sqrt{3} \][/tex]

So, the simplified form of the expression \(-2i \sqrt{-12}\) is:
[tex]\[ 4\sqrt{3} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.