Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the molar mass of methane (\(\text{CH}_4\)), you need to consider the individual molar masses of carbon (C) and hydrogen (H).
1. Identify the atomic masses:
- The atomic mass of carbon (C) is given as \(12.01 \, \text{g/mol}\).
- The atomic mass of hydrogen (H) is given as \(1.01 \, \text{g/mol}\).
2. Count the number of each type of atom in \(\text{CH}_4\):
- Methane (\(\text{CH}_4\)) has 1 carbon atom and 4 hydrogen atoms.
3. Calculate the molar mass:
- The total mass contributed by carbon is \(12.01 \, \text{g/mol} \times 1 = 12.01 \, \text{g/mol}\).
- The total mass contributed by hydrogen is \(1.01 \, \text{g/mol} \times 4 = 4.04 \, \text{g/mol}\).
4. Add the contributions from both elements to get the molar mass of \(\text{CH}_4\):
[tex]\[ 12.01 \, \text{g/mol} + 4.04 \, \text{g/mol} = 16.05 \, \text{g/mol} \][/tex]
Thus, the molar mass of \(\text{CH}_4\) is \(16.05 \, \text{g/mol}\).
Given the choices:
A. \(1 \, \text{g/mol}\)
B. \(4 \, \text{g/mol}\)
C. \(13.02 \, \text{g/mol}\)
D. \(16.05 \, \text{g/mol}\)
The correct answer is:
D. [tex]\(16.05 \, \text{g/mol}\)[/tex]
1. Identify the atomic masses:
- The atomic mass of carbon (C) is given as \(12.01 \, \text{g/mol}\).
- The atomic mass of hydrogen (H) is given as \(1.01 \, \text{g/mol}\).
2. Count the number of each type of atom in \(\text{CH}_4\):
- Methane (\(\text{CH}_4\)) has 1 carbon atom and 4 hydrogen atoms.
3. Calculate the molar mass:
- The total mass contributed by carbon is \(12.01 \, \text{g/mol} \times 1 = 12.01 \, \text{g/mol}\).
- The total mass contributed by hydrogen is \(1.01 \, \text{g/mol} \times 4 = 4.04 \, \text{g/mol}\).
4. Add the contributions from both elements to get the molar mass of \(\text{CH}_4\):
[tex]\[ 12.01 \, \text{g/mol} + 4.04 \, \text{g/mol} = 16.05 \, \text{g/mol} \][/tex]
Thus, the molar mass of \(\text{CH}_4\) is \(16.05 \, \text{g/mol}\).
Given the choices:
A. \(1 \, \text{g/mol}\)
B. \(4 \, \text{g/mol}\)
C. \(13.02 \, \text{g/mol}\)
D. \(16.05 \, \text{g/mol}\)
The correct answer is:
D. [tex]\(16.05 \, \text{g/mol}\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.