Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To multiply the two rational expressions \(\frac{2x + 14}{9x + 2} \cdot \frac{3x + 27}{x + 7}\), follow these steps:
1. Factor Simplification:
- First, factor the numerators and denominators of each fraction if possible.
For \(2x + 14\):
[tex]\[ 2x + 14 = 2(x + 7) \][/tex]
For \(3x + 27\):
[tex]\[ 3x + 27 = 3(x + 9) \][/tex]
So the expression becomes:
[tex]\[ \frac{2(x + 7)}{9x + 2} \cdot \frac{3(x + 9)}{x + 7} \][/tex]
2. Cancel Common Factors:
- Identify and cancel out any common factors in the numerators and denominators.
Notice that \((x + 7)\) appears in both the numerator of the first fraction and the denominator of the second fraction, so they can be canceled. After canceling, the expression simplifies to:
[tex]\[ \frac{2 \cdot 3 (x + 9)}{9x + 2} \][/tex]
3. Multiply the Remaining Terms:
- Multiply what's left of the numerators together and the denominators together:
[tex]\[ \frac{2 \cdot 3 (x + 9)}{9x + 2} = \frac{6(x + 9)}{9x + 2} \][/tex]
Thus, the simplified form of the multiplication \(\frac{2x + 14}{9x + 2} \cdot \frac{3x + 27}{x + 7}\) is:
[tex]\[ \boxed{\frac{6(x + 9)}{9x + 2}} \][/tex]
1. Factor Simplification:
- First, factor the numerators and denominators of each fraction if possible.
For \(2x + 14\):
[tex]\[ 2x + 14 = 2(x + 7) \][/tex]
For \(3x + 27\):
[tex]\[ 3x + 27 = 3(x + 9) \][/tex]
So the expression becomes:
[tex]\[ \frac{2(x + 7)}{9x + 2} \cdot \frac{3(x + 9)}{x + 7} \][/tex]
2. Cancel Common Factors:
- Identify and cancel out any common factors in the numerators and denominators.
Notice that \((x + 7)\) appears in both the numerator of the first fraction and the denominator of the second fraction, so they can be canceled. After canceling, the expression simplifies to:
[tex]\[ \frac{2 \cdot 3 (x + 9)}{9x + 2} \][/tex]
3. Multiply the Remaining Terms:
- Multiply what's left of the numerators together and the denominators together:
[tex]\[ \frac{2 \cdot 3 (x + 9)}{9x + 2} = \frac{6(x + 9)}{9x + 2} \][/tex]
Thus, the simplified form of the multiplication \(\frac{2x + 14}{9x + 2} \cdot \frac{3x + 27}{x + 7}\) is:
[tex]\[ \boxed{\frac{6(x + 9)}{9x + 2}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.