Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for the magnetic force exerted on a charge moving perpendicular to a magnetic field, we use the formula for the magnetic force on a moving charge:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- \( F \) is the magnetic force,
- \( q \) is the charge,
- \( v \) is the velocity,
- \( B \) is the magnetic field.
Given:
- The charge \( q = 4.88 \times 10^{-6} \) C (Coulombs),
- The velocity \( v = 265 \) m/s (meters per second),
- The magnetic field \( B = 0.0579 \) T (Teslas).
First, we calculate the magnitude of the magnetic force:
[tex]\[ F = 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} \times 0.0579 \, \text{T} \][/tex]
Perform the multiplication step-by-step:
1. Multiply the charge by the velocity:
[tex]\[ 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} = 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field:
[tex]\[ 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \times 0.0579 \, \text{T} \][/tex]
[tex]\[ = 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Now, we express the result \( 7.487627999999999 \times 10^{-5} \) N in the form \( A \times 10^B \) N:
Here,
- \( A \) is the coefficient,
- \( B \) is the exponent.
So, the magnetic force on the charge can be expressed as:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Therefore, the magnetic force on the charge is:
[tex]\[ \boxed{7.487627999999999 \times 10^{-5} \, \text{N}} \][/tex]
Highlighting the coefficient and the exponent:
[tex]\[ \text{Coefficient: } 7.487627999999999 \][/tex]
[tex]\[ \text{Exponent: } -5 \][/tex]
So, the final answer is:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Here, the coefficient is [tex]\( \boxed{7.487627999999999} \)[/tex] and the exponent is [tex]\( \boxed{-5} \)[/tex].
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- \( F \) is the magnetic force,
- \( q \) is the charge,
- \( v \) is the velocity,
- \( B \) is the magnetic field.
Given:
- The charge \( q = 4.88 \times 10^{-6} \) C (Coulombs),
- The velocity \( v = 265 \) m/s (meters per second),
- The magnetic field \( B = 0.0579 \) T (Teslas).
First, we calculate the magnitude of the magnetic force:
[tex]\[ F = 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} \times 0.0579 \, \text{T} \][/tex]
Perform the multiplication step-by-step:
1. Multiply the charge by the velocity:
[tex]\[ 4.88 \times 10^{-6} \, \text{C} \times 265 \, \text{m/s} = 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \][/tex]
2. Multiply the result by the magnetic field:
[tex]\[ 1.2932 \times 10^{-3} \, \text{C} \cdot \text{m/s} \times 0.0579 \, \text{T} \][/tex]
[tex]\[ = 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Now, we express the result \( 7.487627999999999 \times 10^{-5} \) N in the form \( A \times 10^B \) N:
Here,
- \( A \) is the coefficient,
- \( B \) is the exponent.
So, the magnetic force on the charge can be expressed as:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Therefore, the magnetic force on the charge is:
[tex]\[ \boxed{7.487627999999999 \times 10^{-5} \, \text{N}} \][/tex]
Highlighting the coefficient and the exponent:
[tex]\[ \text{Coefficient: } 7.487627999999999 \][/tex]
[tex]\[ \text{Exponent: } -5 \][/tex]
So, the final answer is:
[tex]\[ 7.487627999999999 \times 10^{-5} \, \text{N} \][/tex]
Here, the coefficient is [tex]\( \boxed{7.487627999999999} \)[/tex] and the exponent is [tex]\( \boxed{-5} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.