Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
We want to find the probability that either 45 or 46 students out of 84 will receive a B or above on the final exam. Given that the number of students, \(X\), follows a normal distribution \(N(42, 4.6)\) with a mean \(\mu = 42\) and standard deviation \(\sigma = 4.6\), we need to calculate the probabilities for \(X = 45\) and \(X = 46\).
First, let's standardize the values using the z-score formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
1. For \(X = 45\):
[tex]\[ Z = \frac{45 - 42}{4.6} \approx \frac{3}{4.6} \approx 0.652 \][/tex]
2. For \(X = 46\):
[tex]\[ Z = \frac{46 - 42}{4.6} \approx \frac{4}{4.6} \approx 0.870 \][/tex]
Now we need to determine the probabilities associated with these z-scores using the standard normal distribution table.
3. Finding the cumulative probability for \(Z = 0.652\):
Using the standard normal table, we need to find the value closest to \(Z = 0.652\). Looking at the z-table, we can see \(Z = 0.65\) is approximately 0.7422 (since 0.652 is very close to 0.65).
4. Finding the cumulative probability for \(Z = 0.870\):
Similarly, for \(Z = 0.870\), the corresponding probability from the table is 0.8078.
Next, we find the probability that \(X\) is between 45 and 46:
[tex]\[ P(45 \le X \le 46) = P(X \le 46) - P(X \le 45) \][/tex]
Using the cumulative probabilities:
[tex]\[ P(45 \le X \le 46) = 0.8078 - 0.7422 = 0.0656 \][/tex]
Thus, the probability that either 45 or 46 students will receive a B or above on the final exam is approximately [tex]\(0.0656\)[/tex] or [tex]\(6.56\%\)[/tex].
First, let's standardize the values using the z-score formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
1. For \(X = 45\):
[tex]\[ Z = \frac{45 - 42}{4.6} \approx \frac{3}{4.6} \approx 0.652 \][/tex]
2. For \(X = 46\):
[tex]\[ Z = \frac{46 - 42}{4.6} \approx \frac{4}{4.6} \approx 0.870 \][/tex]
Now we need to determine the probabilities associated with these z-scores using the standard normal distribution table.
3. Finding the cumulative probability for \(Z = 0.652\):
Using the standard normal table, we need to find the value closest to \(Z = 0.652\). Looking at the z-table, we can see \(Z = 0.65\) is approximately 0.7422 (since 0.652 is very close to 0.65).
4. Finding the cumulative probability for \(Z = 0.870\):
Similarly, for \(Z = 0.870\), the corresponding probability from the table is 0.8078.
Next, we find the probability that \(X\) is between 45 and 46:
[tex]\[ P(45 \le X \le 46) = P(X \le 46) - P(X \le 45) \][/tex]
Using the cumulative probabilities:
[tex]\[ P(45 \le X \le 46) = 0.8078 - 0.7422 = 0.0656 \][/tex]
Thus, the probability that either 45 or 46 students will receive a B or above on the final exam is approximately [tex]\(0.0656\)[/tex] or [tex]\(6.56\%\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.