At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given polynomial division problem, we'll perform polynomial long division step by step. Here's how we can divide \(10x^3 + 16x + 3\) by \(5x^2 + 4\):
1. Setup the division:
- Dividend: \(10x^3 + 16x + 3\)
- Divisor: \(5x^2 + 4\)
2. Divide the leading terms:
- Leading term of the dividend: \(10x^3\)
- Leading term of the divisor: \(5x^2\)
- Divide \(10x^3\) by \(5x^2\):
[tex]\[ \frac{10x^3}{5x^2} = 2x \][/tex]
- This gives us the first term of the quotient: \(2x\).
3. Multiply the divisor by the first term of the quotient:
- Multiply \(5x^2 + 4\) by \(2x\):
[tex]\[ (5x^2 + 4) \cdot 2x = 10x^3 + 8x \][/tex]
4. Subtract this result from the original dividend:
- Subtract \(10x^3 + 8x\) from \(10x^3 + 16x + 3\):
[tex]\[ (10x^3 + 16x + 3) - (10x^3 + 8x) = 8x + 3 \][/tex]
5. The result of the subtraction:
- New polynomial after subtraction: \(8x + 3\).
6. Determine if further division is possible:
- Now we need to divide \(8x + 3\) by \(5x^2 + 4\).
- The degree of the remainder polynomial \(8x + 3\) is lower than the degree of the divisor \(5x^2 + 4\), so we stop here.
7. Final result:
- Quotient: \(2x\)
- Remainder: \(8x + 3\)
8. Express the final answer as required:
- Quotient plus the remainder over the divisor:
[tex]\[ \frac{10x^3 + 16x + 3}{5x^2 + 4} = 2x + \frac{8x + 3}{5x^2 + 4} \][/tex]
Thus, the final answer is:
[tex]\[ \frac{10x^3 + 16x + 3}{5x^2 + 4} = 2x + \frac{8x + 3}{5x^2 + 4} \][/tex]
1. Setup the division:
- Dividend: \(10x^3 + 16x + 3\)
- Divisor: \(5x^2 + 4\)
2. Divide the leading terms:
- Leading term of the dividend: \(10x^3\)
- Leading term of the divisor: \(5x^2\)
- Divide \(10x^3\) by \(5x^2\):
[tex]\[ \frac{10x^3}{5x^2} = 2x \][/tex]
- This gives us the first term of the quotient: \(2x\).
3. Multiply the divisor by the first term of the quotient:
- Multiply \(5x^2 + 4\) by \(2x\):
[tex]\[ (5x^2 + 4) \cdot 2x = 10x^3 + 8x \][/tex]
4. Subtract this result from the original dividend:
- Subtract \(10x^3 + 8x\) from \(10x^3 + 16x + 3\):
[tex]\[ (10x^3 + 16x + 3) - (10x^3 + 8x) = 8x + 3 \][/tex]
5. The result of the subtraction:
- New polynomial after subtraction: \(8x + 3\).
6. Determine if further division is possible:
- Now we need to divide \(8x + 3\) by \(5x^2 + 4\).
- The degree of the remainder polynomial \(8x + 3\) is lower than the degree of the divisor \(5x^2 + 4\), so we stop here.
7. Final result:
- Quotient: \(2x\)
- Remainder: \(8x + 3\)
8. Express the final answer as required:
- Quotient plus the remainder over the divisor:
[tex]\[ \frac{10x^3 + 16x + 3}{5x^2 + 4} = 2x + \frac{8x + 3}{5x^2 + 4} \][/tex]
Thus, the final answer is:
[tex]\[ \frac{10x^3 + 16x + 3}{5x^2 + 4} = 2x + \frac{8x + 3}{5x^2 + 4} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.