Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the sum of the first 36 terms of the given arithmetic series (13, 19, 25, ...), we can follow these steps:
1. Identify the first term (a) and the common difference (d):
- First term, \( a = 13 \)
- Common difference, \( d = 19 - 13 = 6 \)
2. Determine the number of terms (n):
- Number of terms, \( n = 36 \)
3. Use the formula for the sum of the first \( n \) terms of an arithmetic series:
The formula is:
[tex]\[ S_n = \frac{n}{2} \times (2a + (n-1)d) \][/tex]
Where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( d \) is the common difference, and \( n \) is the number of terms.
4. Substitute the known values into the formula:
- \( a = 13 \)
- \( d = 6 \)
- \( n = 36 \)
[tex]\[ S_{36} = \frac{36}{2} \times (2 \times 13 + (36-1) \times 6) \][/tex]
5. Simplify the expression inside the parentheses:
- Calculate \( 2 \times 13 \):
[tex]\[ 2 \times 13 = 26 \][/tex]
- Calculate \( (36-1) \times 6 \):
[tex]\[ 35 \times 6 = 210 \][/tex]
- Add the two results together:
[tex]\[ 26 + 210 = 236 \][/tex]
6. Multiply by \(\frac{36}{2}\):
[tex]\[ S_{36} = 18 \times 236 \][/tex]
7. Complete the multiplication:
[tex]\[ 18 \times 236 = 4248 \][/tex]
Therefore, the sum of the first 36 terms of the arithmetic series 13, 19, 25, ..., to the nearest integer, is:
[tex]\[ \boxed{4248} \][/tex]
1. Identify the first term (a) and the common difference (d):
- First term, \( a = 13 \)
- Common difference, \( d = 19 - 13 = 6 \)
2. Determine the number of terms (n):
- Number of terms, \( n = 36 \)
3. Use the formula for the sum of the first \( n \) terms of an arithmetic series:
The formula is:
[tex]\[ S_n = \frac{n}{2} \times (2a + (n-1)d) \][/tex]
Where \( S_n \) is the sum of the first \( n \) terms, \( a \) is the first term, \( d \) is the common difference, and \( n \) is the number of terms.
4. Substitute the known values into the formula:
- \( a = 13 \)
- \( d = 6 \)
- \( n = 36 \)
[tex]\[ S_{36} = \frac{36}{2} \times (2 \times 13 + (36-1) \times 6) \][/tex]
5. Simplify the expression inside the parentheses:
- Calculate \( 2 \times 13 \):
[tex]\[ 2 \times 13 = 26 \][/tex]
- Calculate \( (36-1) \times 6 \):
[tex]\[ 35 \times 6 = 210 \][/tex]
- Add the two results together:
[tex]\[ 26 + 210 = 236 \][/tex]
6. Multiply by \(\frac{36}{2}\):
[tex]\[ S_{36} = 18 \times 236 \][/tex]
7. Complete the multiplication:
[tex]\[ 18 \times 236 = 4248 \][/tex]
Therefore, the sum of the first 36 terms of the arithmetic series 13, 19, 25, ..., to the nearest integer, is:
[tex]\[ \boxed{4248} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.