Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equation of the graph after it is translated, we need to understand how translations affect the equation of a graph. Let's go through this step-by-step.
### Step 1: Translation to the Left
When a graph is translated horizontally to the left by a certain number of units, this affects the \( x \)-values in the equation. Specifically, if we want to translate the graph 6 units to the left, we replace \( x \) with \( x + 6 \).
Initially, our equation is:
[tex]\[ y = 7^x \][/tex]
After translating it 6 units to the left, the x in the exponent becomes \( x + 6 \):
[tex]\[ y = 7^{x+6} \][/tex]
### Step 2: Translation Upwards
When a graph is translated vertically upwards by a certain number of units, this affects the \( y \)-values in the equation. Specifically, if we want to translate the graph 3 units upward, we add 3 to the entire function.
From the previous step, our equation is:
[tex]\[ y = 7^{x+6} \][/tex]
After translating it 3 units upward, we add 3:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
### Conclusion
Putting both steps together, the complete translation involves shifting the graph 6 units to the left and then 3 units upward. The new equation of the graph is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
### Choosing the Correct Option
Among the given choices, this corresponds to:
B. \( y = 7^{x+6} + 3 \)
Therefore, the correct equation of the graph in its final position is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
And the correct option is:
B. [tex]\( y = 7^{x+6} + 3 \)[/tex]
### Step 1: Translation to the Left
When a graph is translated horizontally to the left by a certain number of units, this affects the \( x \)-values in the equation. Specifically, if we want to translate the graph 6 units to the left, we replace \( x \) with \( x + 6 \).
Initially, our equation is:
[tex]\[ y = 7^x \][/tex]
After translating it 6 units to the left, the x in the exponent becomes \( x + 6 \):
[tex]\[ y = 7^{x+6} \][/tex]
### Step 2: Translation Upwards
When a graph is translated vertically upwards by a certain number of units, this affects the \( y \)-values in the equation. Specifically, if we want to translate the graph 3 units upward, we add 3 to the entire function.
From the previous step, our equation is:
[tex]\[ y = 7^{x+6} \][/tex]
After translating it 3 units upward, we add 3:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
### Conclusion
Putting both steps together, the complete translation involves shifting the graph 6 units to the left and then 3 units upward. The new equation of the graph is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
### Choosing the Correct Option
Among the given choices, this corresponds to:
B. \( y = 7^{x+6} + 3 \)
Therefore, the correct equation of the graph in its final position is:
[tex]\[ y = 7^{x+6} + 3 \][/tex]
And the correct option is:
B. [tex]\( y = 7^{x+6} + 3 \)[/tex]
To determine the equation of the graph \( y = 7^x \) after it is translated 6 units to the left and 3 units upward, follow these steps:
1. **Horizontal Translation**: Translating 6 units to the left replaces \( x \) with \( x + 6 \):
\[
y = 7^{x + 6}
\]
2. **Vertical Translation**: Translating 3 units upward adds 3 to the entire function:
\[
y = 7^{x + 6} + 3
\]
Thus, the final equation of the graph is:
\[
y = 7^{x + 6} + 3
\]
The correct answer is:
\[
\boxed{y = 7^{x + 6} + 3}
\]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.