Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given the problem, we need to determine the number of ways to arrange 4 books out of 8 on a shelf. This is a permutation problem because the order in which the books are arranged matters.
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
The formula to calculate permutations is given by:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items to choose from,
- \( r \) is the number of items to arrange.
In this problem:
- \( n = 8 \) (the total number of books),
- \( r = 4 \) (the number of books to be arranged).
Using the formula, we substitute the values:
[tex]\[ P(8, 4) = \frac{8!}{(8 - 4)!} \][/tex]
[tex]\[ P(8, 4) = \frac{8!}{4!} \][/tex]
Now, we need to calculate the factorials:
- \( 8! \) (8 factorial) is the product of all positive integers up to 8:
[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \][/tex]
- \( 4! \) (4 factorial) is the product of all positive integers up to 4:
[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]
Now, divide \( 8! \) by \( 4! \):
[tex]\[ P(8, 4) = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} \][/tex]
The \( 4! \) in the denominator cancels out the \( 4! \) in the numerator, which simplifies to:
[tex]\[ P(8, 4) = 8 \times 7 \times 6 \times 5 \][/tex]
Therefore:
[tex]\[ P(8, 4) = 1680 \][/tex]
So, the number of ways to arrange 4 books out of 8 is:
[tex]\[ \boxed{1680} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.