Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equation of the locus of points that are equidistant from points \( A(-2, 3) \) and \( B(6, -5) \), we need to determine the perpendicular bisector of the line segment joining these two points.
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
### Step-by-Step Solution:
1. Finding the midpoint:
The midpoint \((M)\) of the line segment joining points \( A \) and \( B \) can be found using the midpoint formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ M = \left( \frac{-2 + 6}{2}, \frac{3 - 5}{2} \right) = \left( \frac{4}{2}, \frac{-2}{2} \right) = (2, -1) \][/tex]
So, the midpoint \( M \) is \( (2, -1) \).
2. Finding the slope of \( AB \):
The slope \( m_{AB} \) of the line segment \( AB \) is given by:
[tex]\[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of \( A \) and \( B \):
[tex]\[ m_{AB} = \frac{-5 - 3}{6 - (-2)} = \frac{-8}{6 + 2} = \frac{-8}{8} = -1 \][/tex]
So, the slope \( m_{AB} \) is \( -1 \).
3. Finding the slope of the perpendicular bisector:
The slope of the perpendicular bisector is the negative reciprocal of the slope of \( AB \). Hence:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{1}{-1} = 1 \][/tex]
So, the slope of the perpendicular bisector is \( 1 \).
4. Writing the equation of the perpendicular bisector:
The perpendicular bisector passes through the midpoint \( (2, -1) \) and has a slope of \( 1 \). Using the point-slope form of a line equation \( y - y_1 = m(x - x_1) \):
[tex]\[ y - (-1) = 1(x - 2) \][/tex]
Simplifying:
[tex]\[ y + 1 = x - 2 \][/tex]
Rearranging to get the standard form:
[tex]\[ x - y = 3 \][/tex]
Therefore, the equation of the locus of points equidistant from \( A \) and \( B \) is:
[tex]\[ \boxed{x - y = 3} \][/tex]
So, the correct option is [tex]\( 2) \ x - y = 3 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.