Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To calculate the standard deviation \(\sigma\) of \(X\) for the given probability distribution, follow these steps:
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
1. Given Data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -1 & 0 & 2 & 5 & 10 \\ \hline P(X=x) & 0.1 & 0.1 & 0.3 & 0.1 & 0.4 & 0 \\ \hline \end{array} \][/tex]
2. Calculate the Mean (Expected Value) \(\mu\):
[tex]\[ \mu = E[X] = \sum_{i} x_i P(X = x_i) \][/tex]
[tex]\[ \mu = (-5 \times 0.1) + (-1 \times 0.1) + (0 \times 0.3) + (2 \times 0.1) + (5 \times 0.4) + (10 \times 0) \][/tex]
[tex]\[ \mu = -0.5 + (-0.1) + 0 + 0.2 + 2 + 0 = 1.6 \][/tex]
3. Calculate the Variance \(\sigma^2\):
[tex]\[ \sigma^2 = E[(X - \mu)^2] = \sum_{i} (x_i - \mu)^2 P(X = x_i) \][/tex]
[tex]\[ \sigma^2 = ((-5 - 1.6)^2 \times 0.1) + ((-1 - 1.6)^2 \times 0.1) + ((0 - 1.6)^2 \times 0.3) + ((2 - 1.6)^2 \times 0.1) + ((5 - 1.6)^2 \times 0.4) + ((10 - 1.6)^2 \times 0) \][/tex]
[tex]\[ \sigma^2 = (43.56 \times 0.1) + (7.84 \times 0.1) + (2.56 \times 0.3) + (0.16 \times 0.1) + (11.56 \times 0.4) + (70.56 \times 0) \][/tex]
[tex]\[ \sigma^2 = 4.356 + 0.784 + 0.768 + 0.016 + 4.624 + 0 = 10.548 \][/tex]
4. Calculate the Standard Deviation \(\sigma\):
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]
[tex]\[ \sigma = \sqrt{10.548} = 3.248 \][/tex]
5. Round the Standard Deviation to Two Decimal Places:
[tex]\[ \boxed{3.23} \][/tex]
So, the standard deviation [tex]\(\sigma\)[/tex] of [tex]\(X\)[/tex] for the given probability distribution is [tex]\( \boxed{3.23} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.