Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the values of the constants \( p \), \( q \), and \( r \) in the function \( f(x) = p x^2 + q x + r \) given the conditions \( f(0) = 4 \), \( f(-1) = 6 \), and \( f(-2) = 18 \), we follow these steps:
1. Substitute \( x = 0 \) into the function:
[tex]\[ f(0) = p(0)^2 + q(0) + r = r \][/tex]
We know \( f(0) = 4 \), so:
[tex]\[ r = 4 \][/tex]
2. Substitute \( x = -1 \) into the function:
[tex]\[ f(-1) = p(-1)^2 + q(-1) + r = p(1) - q + r = p - q + r \][/tex]
We know \( f(-1) = 6 \), so:
[tex]\[ p - q + r = 6 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ p - q + 4 = 6 \implies p - q = 2 \quad \text{(Equation 1)} \][/tex]
3. Substitute \( x = -2 \) into the function:
[tex]\[ f(-2) = p(-2)^2 + q(-2) + r = p(4) - 2q + r = 4p - 2q + r \][/tex]
We know \( f(-2) = 18 \), so:
[tex]\[ 4p - 2q + r = 18 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ 4p - 2q + 4 = 18 \implies 4p - 2q = 14 \quad \text{(Equation 2)} \][/tex]
4. Solve the system of equations derived from steps 2 and 3:
From Equation 1:
[tex]\[ p - q = 2 \][/tex]
From Equation 2:
[tex]\[ 4p - 2q = 14 \][/tex]
We can solve these equations simultaneously. First, solve Equation 1 for \( p \):
[tex]\[ p = q + 2 \][/tex]
Substitute \( p = q + 2 \) into Equation 2:
[tex]\[ 4(q + 2) - 2q = 14 \][/tex]
Simplify and solve for \( q \):
[tex]\[ 4q + 8 - 2q = 14 \implies 2q + 8 = 14 \implies 2q = 6 \implies q = 3 \][/tex]
5. Find \( p \) using the value of \( q \):
[tex]\[ p = q + 2 = 3 + 2 = 5 \][/tex]
Hence, the values of the constants are:
[tex]\[ p = 5, \quad q = 3, \quad r = 4 \][/tex]
1. Substitute \( x = 0 \) into the function:
[tex]\[ f(0) = p(0)^2 + q(0) + r = r \][/tex]
We know \( f(0) = 4 \), so:
[tex]\[ r = 4 \][/tex]
2. Substitute \( x = -1 \) into the function:
[tex]\[ f(-1) = p(-1)^2 + q(-1) + r = p(1) - q + r = p - q + r \][/tex]
We know \( f(-1) = 6 \), so:
[tex]\[ p - q + r = 6 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ p - q + 4 = 6 \implies p - q = 2 \quad \text{(Equation 1)} \][/tex]
3. Substitute \( x = -2 \) into the function:
[tex]\[ f(-2) = p(-2)^2 + q(-2) + r = p(4) - 2q + r = 4p - 2q + r \][/tex]
We know \( f(-2) = 18 \), so:
[tex]\[ 4p - 2q + r = 18 \][/tex]
Substituting \( r = 4 \) from the first condition:
[tex]\[ 4p - 2q + 4 = 18 \implies 4p - 2q = 14 \quad \text{(Equation 2)} \][/tex]
4. Solve the system of equations derived from steps 2 and 3:
From Equation 1:
[tex]\[ p - q = 2 \][/tex]
From Equation 2:
[tex]\[ 4p - 2q = 14 \][/tex]
We can solve these equations simultaneously. First, solve Equation 1 for \( p \):
[tex]\[ p = q + 2 \][/tex]
Substitute \( p = q + 2 \) into Equation 2:
[tex]\[ 4(q + 2) - 2q = 14 \][/tex]
Simplify and solve for \( q \):
[tex]\[ 4q + 8 - 2q = 14 \implies 2q + 8 = 14 \implies 2q = 6 \implies q = 3 \][/tex]
5. Find \( p \) using the value of \( q \):
[tex]\[ p = q + 2 = 3 + 2 = 5 \][/tex]
Hence, the values of the constants are:
[tex]\[ p = 5, \quad q = 3, \quad r = 4 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.