Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line passing through point \( C \) and perpendicular to line segment \( \overline{A B} \), follow these steps:
1. Find the slope of line segment \( \overline{A B} \):
The coordinates of point \( A \) are \( (2, 9) \) and those of point \( B \) are \( (8, 4) \).
The slope \( m_{AB} \) is calculated as:
[tex]\[ m_{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Find the slope of the line perpendicular to \( \overline{A B} \):
The slope \( m_{\perpendicular} \) of the perpendicular line is the negative reciprocal of \( m_{AB} \):
[tex]\[ m_{\perpendicular} = -\frac{1}{m_{AB}} = -\frac{1}{-\frac{5}{6}} = \frac{6}{5} = 1.2 \][/tex]
3. Use the point-slope form to write the equation of the line passing through \( C(-3, -2) \):
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is point \( C \) and \( m \) is the slope. So:
[tex]\[ y - (-2) = 1.2(x - (-3)) \][/tex]
4. Convert to slope-intercept form \( y = mx + b \):
Simplify and solve for \( y \):
[tex]\[ y + 2 = 1.2(x + 3) \][/tex]
[tex]\[ y + 2 = 1.2x + 3.6 \][/tex]
[tex]\[ y = 1.2x + 3.6 - 2 \][/tex]
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, the complete equation of the line passing through point \( C \) and perpendicular to \( \overline{A B} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
Thus, the equation in the given format is:
[tex]\[ y = \boxed{1.2}x + \boxed{1.6} \][/tex]
1. Find the slope of line segment \( \overline{A B} \):
The coordinates of point \( A \) are \( (2, 9) \) and those of point \( B \) are \( (8, 4) \).
The slope \( m_{AB} \) is calculated as:
[tex]\[ m_{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Find the slope of the line perpendicular to \( \overline{A B} \):
The slope \( m_{\perpendicular} \) of the perpendicular line is the negative reciprocal of \( m_{AB} \):
[tex]\[ m_{\perpendicular} = -\frac{1}{m_{AB}} = -\frac{1}{-\frac{5}{6}} = \frac{6}{5} = 1.2 \][/tex]
3. Use the point-slope form to write the equation of the line passing through \( C(-3, -2) \):
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is point \( C \) and \( m \) is the slope. So:
[tex]\[ y - (-2) = 1.2(x - (-3)) \][/tex]
4. Convert to slope-intercept form \( y = mx + b \):
Simplify and solve for \( y \):
[tex]\[ y + 2 = 1.2(x + 3) \][/tex]
[tex]\[ y + 2 = 1.2x + 3.6 \][/tex]
[tex]\[ y = 1.2x + 3.6 - 2 \][/tex]
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, the complete equation of the line passing through point \( C \) and perpendicular to \( \overline{A B} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
Thus, the equation in the given format is:
[tex]\[ y = \boxed{1.2}x + \boxed{1.6} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.