Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright, let's classify the given algebraic expressions into binomials and trinomials. Here's a detailed, step-by-step explanation:
### Definitions
1. Monomial: An algebraic expression with only one term (e.g., \(x^5\)).
2. Binomial: An algebraic expression with exactly two terms (e.g., \(x^2 + 3\)).
3. Trinomial: An algebraic expression with exactly three terms (e.g., \(x^3 - 2x - 3\)).
4. Other Polynomials: Algebraic expressions with more than three terms.
### Classifying the Expressions
Let's go through each given expression and count its terms.
#### 1. \(6x^2 + \frac{4x + 2}{2}\)
First, simplify:
[tex]\[ 6x^2 + \frac{4x + 2}{2} = 6x^2 + (2x + 1) \][/tex]
Simplified, the expression is:
[tex]\[ 6x^2 + 2x + 1 \][/tex]
This has three terms: \(6x^2\), \(2x\), and \(1\).
Classification: Trinomial
#### 2. \(\frac{5x + 2}{3}\)
This expression cannot be simplified further and it remains:
[tex]\[ \frac{5x + 2}{3} \][/tex]
This is considered as a single term.
Classification: Binomial
#### 3. \(x^3 - 2x - 3\)
The terms are: \(x^3\), \(-2x\), and \(-3\).
Classification: Trinomial
#### 4. \(x^3 + 9x - 3y + 6\)
The terms are: \(x^3\), \(9x\), \(-3y\), and \(6\).
Classification: Other Polynomial
#### 5. \(x^6 + 7x\)
The terms are: \(x^6\) and \(7x\).
Classification: Binomial
#### 6. \(x^5\)
This is a single term: \(x^5\).
Classification: Monomial
#### 7. \(y^4\)
This is a single term: \(y^4\).
Classification: Monomial
### Summary
Now let's summarize the classified expressions.
#### Binomials
- \(\frac{5x + 2}{3}\)
- \(x^6 + 7x\)
#### Trinomials
- \(6x^2 + \frac{4x + 2}{2}\) (or \(6x^2 + 2x + 1\) after simplification)
- \(x^3 - 2x - 3\)
#### Monomials
- \(x^5\)
- \(y^4\)
#### Other Polynomials
- \(x^3 + 9x - 3y + 6\)
### Final Result
- Binomials: \(\frac{5x + 2}{3}\), \(x^6 + 7x\)
- Trinomials: [tex]\(6x^2 + 2x + 1\)[/tex], [tex]\(x^3 - 2x - 3\)[/tex]
### Definitions
1. Monomial: An algebraic expression with only one term (e.g., \(x^5\)).
2. Binomial: An algebraic expression with exactly two terms (e.g., \(x^2 + 3\)).
3. Trinomial: An algebraic expression with exactly three terms (e.g., \(x^3 - 2x - 3\)).
4. Other Polynomials: Algebraic expressions with more than three terms.
### Classifying the Expressions
Let's go through each given expression and count its terms.
#### 1. \(6x^2 + \frac{4x + 2}{2}\)
First, simplify:
[tex]\[ 6x^2 + \frac{4x + 2}{2} = 6x^2 + (2x + 1) \][/tex]
Simplified, the expression is:
[tex]\[ 6x^2 + 2x + 1 \][/tex]
This has three terms: \(6x^2\), \(2x\), and \(1\).
Classification: Trinomial
#### 2. \(\frac{5x + 2}{3}\)
This expression cannot be simplified further and it remains:
[tex]\[ \frac{5x + 2}{3} \][/tex]
This is considered as a single term.
Classification: Binomial
#### 3. \(x^3 - 2x - 3\)
The terms are: \(x^3\), \(-2x\), and \(-3\).
Classification: Trinomial
#### 4. \(x^3 + 9x - 3y + 6\)
The terms are: \(x^3\), \(9x\), \(-3y\), and \(6\).
Classification: Other Polynomial
#### 5. \(x^6 + 7x\)
The terms are: \(x^6\) and \(7x\).
Classification: Binomial
#### 6. \(x^5\)
This is a single term: \(x^5\).
Classification: Monomial
#### 7. \(y^4\)
This is a single term: \(y^4\).
Classification: Monomial
### Summary
Now let's summarize the classified expressions.
#### Binomials
- \(\frac{5x + 2}{3}\)
- \(x^6 + 7x\)
#### Trinomials
- \(6x^2 + \frac{4x + 2}{2}\) (or \(6x^2 + 2x + 1\) after simplification)
- \(x^3 - 2x - 3\)
#### Monomials
- \(x^5\)
- \(y^4\)
#### Other Polynomials
- \(x^3 + 9x - 3y + 6\)
### Final Result
- Binomials: \(\frac{5x + 2}{3}\), \(x^6 + 7x\)
- Trinomials: [tex]\(6x^2 + 2x + 1\)[/tex], [tex]\(x^3 - 2x - 3\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.