Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, let's consider the characteristics of an arithmetic progression and use given conditions to derive the solution.
### Step-by-Step Solution
1. Identify Initial Conditions:
- The first term of the arithmetic progression (AP) is denoted as \( a_1 = \gamma \), where \(\gamma < 0\).
- It is given that \( a_k = 0 \). This indicates that the \(k\)-th term of the AP is zero.
2. General Term of an Arithmetic Progression:
- For an AP, the general term \( a_n \) can be expressed as:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
Here, \( d \) is the common difference between consecutive terms.
3. Use Condition \( a_k = 0 \) to Find \( d \):
- According to the given condition \( a_k = 0 \):
[tex]\[ a_k = a_1 + (k-1)d = 0 \][/tex]
- Substitute \( a_1 = \gamma \):
[tex]\[ \gamma + (k-1)d = 0 \][/tex]
- Solve for \( d \):
[tex]\[ d = -\frac{\gamma}{k-1} \][/tex]
4. Form the Series \( S_2 \) to \( S_{2k-1} \):
- We need to find the terms of the series from \( S_2 \) to \( S_{2k-1} \). Essentially, we are interested in terms from \( a_2 \) to \( a_{2k-1} \).
5. Calculate Each Term:
- For \( n = 2 \) to \( 2k-1 \), the \( n \)-th term is:
[tex]\[ a_n = a_1 + (n-1)d = \gamma + (n-1) \left( -\frac{\gamma}{k-1} \right) \][/tex]
- Simplify inside the parentheses:
[tex]\[ a_n = \gamma - \frac{\gamma (n-1)}{k-1} \][/tex]
- Factor out \(\gamma\):
[tex]\[ a_n = \gamma \left( 1 - \frac{n-1}{k-1} \right) \][/tex]
- Simplify the fraction:
[tex]\[ a_n = \gamma \left( 1 - \frac{n-1}{k-1} \right) = \gamma \cdot \frac{k-1 - (n-1)}{k-1} = \gamma \cdot \frac{k-n}{k-1} \][/tex]
6. Write the Series:
- The series \( S_2 \) to \( S_{2k-1} \) consists of the terms \( a_n \) where \( n \) ranges from 2 to \( 2k-1 \):
[tex]\[ S_2 \sim S_{2k-1} = \left\{ \gamma \cdot \frac{k-2}{k-1}, \gamma \cdot \frac{k-3}{k-1}, \gamma \cdot \frac{k-4}{k-1}, \ldots, \gamma \cdot \frac{k-(2k-1)}{k-1} \right\} \][/tex]
7. Simplify Each Term:
- Specifically breaking down a few terms:
[tex]\[ a_2 = \gamma \cdot \frac{k-2}{k-1} \][/tex]
[tex]\[ a_3 = \gamma \cdot \frac{k-3}{k-1} \][/tex]
[tex]\[ ... \][/tex]
[tex]\[ a_{2k-1} = \gamma \cdot \frac{k-(2k-1)}{k-1} = \gamma \cdot \frac{k-2k+1}{k-1} = \gamma \cdot \frac{1-k}{k-1} \][/tex]
Thus, the series \( S_2 \) to \( S_{2k-1} \) is:
[tex]\[ \left\{ \gamma \cdot \frac{k-2}{k-1}, \gamma \cdot \frac{k-3}{k-1}, \gamma \cdot \frac{k-4}{k-1}, \ldots, \gamma \cdot \frac{1-2k}{k-1} \right\} \][/tex]
### Step-by-Step Solution
1. Identify Initial Conditions:
- The first term of the arithmetic progression (AP) is denoted as \( a_1 = \gamma \), where \(\gamma < 0\).
- It is given that \( a_k = 0 \). This indicates that the \(k\)-th term of the AP is zero.
2. General Term of an Arithmetic Progression:
- For an AP, the general term \( a_n \) can be expressed as:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
Here, \( d \) is the common difference between consecutive terms.
3. Use Condition \( a_k = 0 \) to Find \( d \):
- According to the given condition \( a_k = 0 \):
[tex]\[ a_k = a_1 + (k-1)d = 0 \][/tex]
- Substitute \( a_1 = \gamma \):
[tex]\[ \gamma + (k-1)d = 0 \][/tex]
- Solve for \( d \):
[tex]\[ d = -\frac{\gamma}{k-1} \][/tex]
4. Form the Series \( S_2 \) to \( S_{2k-1} \):
- We need to find the terms of the series from \( S_2 \) to \( S_{2k-1} \). Essentially, we are interested in terms from \( a_2 \) to \( a_{2k-1} \).
5. Calculate Each Term:
- For \( n = 2 \) to \( 2k-1 \), the \( n \)-th term is:
[tex]\[ a_n = a_1 + (n-1)d = \gamma + (n-1) \left( -\frac{\gamma}{k-1} \right) \][/tex]
- Simplify inside the parentheses:
[tex]\[ a_n = \gamma - \frac{\gamma (n-1)}{k-1} \][/tex]
- Factor out \(\gamma\):
[tex]\[ a_n = \gamma \left( 1 - \frac{n-1}{k-1} \right) \][/tex]
- Simplify the fraction:
[tex]\[ a_n = \gamma \left( 1 - \frac{n-1}{k-1} \right) = \gamma \cdot \frac{k-1 - (n-1)}{k-1} = \gamma \cdot \frac{k-n}{k-1} \][/tex]
6. Write the Series:
- The series \( S_2 \) to \( S_{2k-1} \) consists of the terms \( a_n \) where \( n \) ranges from 2 to \( 2k-1 \):
[tex]\[ S_2 \sim S_{2k-1} = \left\{ \gamma \cdot \frac{k-2}{k-1}, \gamma \cdot \frac{k-3}{k-1}, \gamma \cdot \frac{k-4}{k-1}, \ldots, \gamma \cdot \frac{k-(2k-1)}{k-1} \right\} \][/tex]
7. Simplify Each Term:
- Specifically breaking down a few terms:
[tex]\[ a_2 = \gamma \cdot \frac{k-2}{k-1} \][/tex]
[tex]\[ a_3 = \gamma \cdot \frac{k-3}{k-1} \][/tex]
[tex]\[ ... \][/tex]
[tex]\[ a_{2k-1} = \gamma \cdot \frac{k-(2k-1)}{k-1} = \gamma \cdot \frac{k-2k+1}{k-1} = \gamma \cdot \frac{1-k}{k-1} \][/tex]
Thus, the series \( S_2 \) to \( S_{2k-1} \) is:
[tex]\[ \left\{ \gamma \cdot \frac{k-2}{k-1}, \gamma \cdot \frac{k-3}{k-1}, \gamma \cdot \frac{k-4}{k-1}, \ldots, \gamma \cdot \frac{1-2k}{k-1} \right\} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.