Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the average atomic mass of element \( M \), we will use the weighted average formula, which considers both the relative abundance and the atomic mass of each isotope. Here are the steps involved:
1. List the given data:
- Isotope 1: Relative abundance = \( 78.99\% \), Atomic mass = \( 23.9850 \) amu
- Isotope 2: Relative abundance = \( 10.00\% \), Atomic mass = \( 24.9858 \) amu
- Isotope 3: Relative abundance = \( 11.01\% \), Atomic mass = \( 25.9826 \) amu
2. Calculate the weighted contribution of each isotope:
- Isotope 1 contribution = \( 0.7899 \times 23.9850 \)
- Isotope 2 contribution = \( 0.1000 \times 24.9858 \)
- Isotope 3 contribution = \( 0.1101 \times 25.9826 \)
3. Sum the contributions to get the total weighted atomic mass:
- Total weighted atomic mass = \( (0.7899 \times 23.9850) + (0.1000 \times 24.9858) + (0.1101 \times 25.9826) \)
4. Divide the total weighted atomic mass by \( 100 \) to find the average atomic mass:
- Average atomic mass = \(\frac{ (0.7899 \times 23.9850) + (0.1000 \times 24.9858) + (0.1101 \times 25.9826) }{100}\)
Performing these calculations, we find that the average atomic mass of element \( M \) is approximately:
\( 24.30 \)
Thus, the correct choice from the given options is:
24.30
1. List the given data:
- Isotope 1: Relative abundance = \( 78.99\% \), Atomic mass = \( 23.9850 \) amu
- Isotope 2: Relative abundance = \( 10.00\% \), Atomic mass = \( 24.9858 \) amu
- Isotope 3: Relative abundance = \( 11.01\% \), Atomic mass = \( 25.9826 \) amu
2. Calculate the weighted contribution of each isotope:
- Isotope 1 contribution = \( 0.7899 \times 23.9850 \)
- Isotope 2 contribution = \( 0.1000 \times 24.9858 \)
- Isotope 3 contribution = \( 0.1101 \times 25.9826 \)
3. Sum the contributions to get the total weighted atomic mass:
- Total weighted atomic mass = \( (0.7899 \times 23.9850) + (0.1000 \times 24.9858) + (0.1101 \times 25.9826) \)
4. Divide the total weighted atomic mass by \( 100 \) to find the average atomic mass:
- Average atomic mass = \(\frac{ (0.7899 \times 23.9850) + (0.1000 \times 24.9858) + (0.1101 \times 25.9826) }{100}\)
Performing these calculations, we find that the average atomic mass of element \( M \) is approximately:
\( 24.30 \)
Thus, the correct choice from the given options is:
24.30
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.