Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's break down the steps to find the amount of money that Charlie must pay back after taking out a loan of [tex]$20,000 with a compound interest rate of $[/tex]4\%$ per year for 3 years.
1. Principal (P): The initial amount of money borrowed. For this loan, \( P = £ 20,000 \).
2. Rate (r): The annual interest rate. In this case, \( r = 4\% \) per year. To use this rate in calculations, we convert it to a decimal: \( r = \frac{4}{100} = 0.04 \).
3. Time (t): The number of years the money is borrowed for. Here, \( t = 3 \) years.
4. Compounding Periods (n): Since the interest is compounded annually, \( n = 1 \).
The compound interest formula to calculate the amount (A) to be paid back is given by:
[tex]\[ A = P \times \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values we have:
[tex]\[ A = 20,000 \times \left(1 + \frac{0.04}{1}\right)^{1 \times 3} \][/tex]
[tex]\[ A = 20,000 \times (1 + 0.04)^3 \][/tex]
[tex]\[ A = 20,000 \times 1.04^3 \][/tex]
By solving this expression:
1. The base of our expression (the expression inside the parentheses) is \( 1.04 \).
2. The exponent (to which the base is raised) is \( 3 \).
Thus, the completed expression for the amount of money that Charlie must pay back after 3 years is:
[tex]\[ £ 20,000 \times 1.04^3 \][/tex]
Evaluating \( 1.04^3 \):
[tex]\[ 1.04^3 \approx 1.124864 \][/tex]
And calculating the final amount:
[tex]\[ A \approx 20,000 \times 1.124864 \][/tex]
[tex]\[ A \approx £ 22497.28 \][/tex]
Therefore, the amount of money that Charlie must pay back at the end of 3 years is approximately £22,497.28.
1. Principal (P): The initial amount of money borrowed. For this loan, \( P = £ 20,000 \).
2. Rate (r): The annual interest rate. In this case, \( r = 4\% \) per year. To use this rate in calculations, we convert it to a decimal: \( r = \frac{4}{100} = 0.04 \).
3. Time (t): The number of years the money is borrowed for. Here, \( t = 3 \) years.
4. Compounding Periods (n): Since the interest is compounded annually, \( n = 1 \).
The compound interest formula to calculate the amount (A) to be paid back is given by:
[tex]\[ A = P \times \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values we have:
[tex]\[ A = 20,000 \times \left(1 + \frac{0.04}{1}\right)^{1 \times 3} \][/tex]
[tex]\[ A = 20,000 \times (1 + 0.04)^3 \][/tex]
[tex]\[ A = 20,000 \times 1.04^3 \][/tex]
By solving this expression:
1. The base of our expression (the expression inside the parentheses) is \( 1.04 \).
2. The exponent (to which the base is raised) is \( 3 \).
Thus, the completed expression for the amount of money that Charlie must pay back after 3 years is:
[tex]\[ £ 20,000 \times 1.04^3 \][/tex]
Evaluating \( 1.04^3 \):
[tex]\[ 1.04^3 \approx 1.124864 \][/tex]
And calculating the final amount:
[tex]\[ A \approx 20,000 \times 1.124864 \][/tex]
[tex]\[ A \approx £ 22497.28 \][/tex]
Therefore, the amount of money that Charlie must pay back at the end of 3 years is approximately £22,497.28.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.