Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Use inverse trigonometric functions to find the solutions of the equation that are in the given interval. Approximate the solutions to four decimal places.

[tex]\[ \cos^2 x + 3 \cos x - 2 = 0 \quad \text{for} \quad [0, 2\pi) \][/tex]

[tex]\[ x = \boxed{\text{smaller value}} \][/tex]

[tex]\[ x = \boxed{\text{larger value}} \][/tex]


Sagot :

Certainly! Let’s solve the given equation \(\cos^2 x + 3 \cos x - 2 = 0\) in the interval \([0, 2\pi)\).

### Step-by-Step Solution:

1. Substitute \( y = \cos x \):
The equation \(\cos^2 x + 3 \cos x - 2 = 0\) can be rewritten as:
[tex]\[ y^2 + 3y - 2 = 0 \][/tex]
where \( y = \cos x \).

2. Solve the Quadratic Equation:
We need to find the roots of the quadratic equation \( y^2 + 3y - 2 = 0 \).
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation \( y^2 + 3y - 2 = 0 \), the coefficients are \(a = 1\), \(b = 3\), and \(c = -2\). Plugging these into the formula, we get:
[tex]\[ y = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{-3 \pm \sqrt{9 + 8}}{2} \][/tex]
[tex]\[ y = \frac{-3 \pm \sqrt{17}}{2} \][/tex]

3. Find the Roots:
The roots of the equation are:
[tex]\[ y_1 = \frac{-3 + \sqrt{17}}{2} \][/tex]
and
[tex]\[ y_2 = \frac{-3 - \sqrt{17}}{2} \][/tex]

Numerically approximating these roots:
[tex]\[ y_1 \approx \frac{-3 + 4.1231}{2} \approx \frac{1.1231}{2} \approx 0.5616 \][/tex]
[tex]\[ y_2 \approx \frac{-3 - 4.1231}{2} \approx \frac{-7.1231}{2} \approx -3.5616 \][/tex]

4. Finding \(x\) such that \(\cos x = y_1\) or \(\cos x = y_2\):
Note that \(\cos x\) ranges from \(-1\) to \(1\). Since \( y_2 = -3.5616 \) is outside this range, it is not a valid solution. We only consider \( y = 0.5616 \).

5. Use the Inverse Cosine Function:
To find \(x\) such that \( \cos x = 0.5616 \):
[tex]\[ x = \cos^{-1}(0.5616) \][/tex]
Using a calculator, we approximate:
[tex]\[ x_1 \approx \cos^{-1}(0.5616) \approx 0.9749 \][/tex]

6. Considering all possible \(x\) within \([0, 2\pi)\):
The cosine function is positive in the first and fourth quadrants:

- First quadrant solution: \( x_1 \approx 0.9749 \)
- Third quadrant solution: \( x_2 \approx 2\pi - x_1 \approx 2\pi - 0.9749 \approx 5.3082 \)

Thus, the solutions are:

- \( x \approx 0.9749 \) (smaller value)
- \( x \approx 5.3082 \) (larger value)

To four decimal places:
[tex]\[ x_1 \approx 0.9749 \][/tex]
[tex]\[ x_2 \approx 5.3082 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.