Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
To evaluate the expression \(\arcsin\left(\frac{1}{2}\right)\), follow these steps:
1. **Understand the Function:**
- \(\arcsin(x)\) is the inverse function of \(\sin(x)\).
- This means \(\arcsin(x)\) returns the angle \(\theta\) such that \(\sin(\theta) = x\).
2. **Identify the Range:**
- The range of \(\arcsin(x)\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). This is the interval in which \(\theta\) will lie.
3. **Solve for the Angle:**
- We need to find the angle \(\theta\) such that \(\sin(\theta) = \frac{1}{2}\).
- Recall the unit circle or trigonometric values: \(\sin(\frac{\pi}{6}) = \frac{1}{2}\).
4. **Verify the Angle Lies in the Range:**
- \(\frac{\pi}{6}\) is within the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\).
5. **Conclusion:**
- Therefore, \(\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}\).
So, the value of \(\arcsin\left(\frac{1}{2}\right)\) is \(\frac{\pi}{6}\).
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.