Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the interval of convergence, we need to analyze the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]
We already have the radius of convergence \( R = \frac{1}{4} \).
Next, we need to find the interval of convergence.
### Step 1: Ratio Test
To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]
The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]
First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]
Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]
Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]
For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]
Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]
So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]
Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]
### Step 2: Check the Endpoints
Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.
Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).
### Conclusion
The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]
We already have the radius of convergence \( R = \frac{1}{4} \).
Next, we need to find the interval of convergence.
### Step 1: Ratio Test
To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]
The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]
First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]
Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]
Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]
For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]
Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]
So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]
Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]
### Step 2: Check the Endpoints
Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.
Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).
### Conclusion
The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.