Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's go through each part of the problem step-by-step.
### Part (a): Finding the Domains
#### Domain of \( f \)
The function \( f \) is defined as \( f(x) = 8x + 3 \). This is a linear function, which is defined for all real numbers. The domain of \( f \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( g \)
The function \( g \) is defined as \( g(x) = 1 - 6x \). This is also a linear function, which is defined for all real numbers. The domain of \( g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f + g \)
The function \((f + g)(x)\) is the sum of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f + g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f - g \)
The function \((f - g)(x)\) is the difference of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f - g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( fg \)
The function \((fg)(x)\) is the product of two linear functions, which results in a quadratic function. A quadratic function is defined for all real numbers. The domain of \( fg \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( ff \)
The function \((ff)(x)\) means the function \( f \) composed with itself, \( f(f(x)) \). Since \( f \) is defined for all real numbers and its output is also a real number, the domain of \( ff \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \(\frac{f}{g}\)
The function \(\left(\frac{f}{g}\right)(x)\) is the quotient of \( f \) and \( g \). This quotient is defined for all \( x \) except where \( g(x) = 0 \).
[tex]\[ g(x) = 1 - 6x = 0 \implies x = \frac{1}{6} \][/tex]
So, the domain of \(\frac{f}{g}\) is:
[tex]\[ (-\infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty) \][/tex]
#### Domain of \(\frac{g}{f}\)
The function \(\left(\frac{g}{f}\right)(x)\) is the quotient of \( g \) and \( f \). This quotient is defined for all \( x \) except where \( f(x) = 0 \).
[tex]\[ f(x) = 8x + 3 = 0 \implies x = -\frac{3}{8} \][/tex]
So, the domain of \(\frac{g}{f}\) is:
[tex]\[ (-\infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty) \][/tex]
### Part (b): Finding the Functions
Now, let's find the expressions for each function.
#### \((f + g)(x)\)
[tex]\[ (f + g)(x) = f(x) + g(x) = (8x + 3) + (1 - 6x) = 2x + 4 \][/tex]
#### \((f - g)(x)\)
[tex]\[ (f - g)(x) = f(x) - g(x) = (8x + 3) - (1 - 6x) = 8x + 3 - 1 + 6x = 14x + 2 \][/tex]
#### \((fg)(x)\)
[tex]\[ (fg)(x) = f(x) \cdot g(x) = (8x + 3)(1 - 6x) = 8x - 48x^2 + 3 - 18x = -48x^2 - 10x + 3 \][/tex]
#### \((ff)(x)\)
[tex]\[ (ff)(x) = f(f(x)) \][/tex]
[tex]\[ f(x) = 8x + 3 \][/tex]
[tex]\[ f(f(x)) = f(8x + 3) = 8(8x + 3) + 3 = 64x + 24 + 3 = 64x + 27 \][/tex]
#### \(\left(\frac{f}{g}\right)(x)\)
[tex]\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{8x + 3}{1 - 6x} \][/tex]
#### \(\left(\frac{g}{f}\right)(x)\)
[tex]\[ \left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{1 - 6x}{8x + 3} \][/tex]
In summary:
### Part (a): Domains
- Domain of \( f \): \((- \infty, \infty)\)
- Domain of \( g \): \((- \infty, \infty)\)
- Domain of \( f + g \): \((- \infty, \infty)\)
- Domain of \( f - g \): \((- \infty, \infty)\)
- Domain of \( fg \): \((- \infty, \infty)\)
- Domain of \( ff \): \((- \infty, \infty)\)
- Domain of \(\frac{f}{g}\): \((- \infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty)\)
- Domain of \(\frac{g}{f}\): \((- \infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty)\)
### Part (b): Functions
- \((f + g)(x) = 2x + 4\)
- \((f - g)(x) = 14x + 2\)
- \((fg)(x) = -48x^2 - 10x + 3\)
- \((ff)(x) = 64x + 27\)
- \(\left(\frac{f}{g}\right)(x) = \frac{8x + 3}{1 - 6x}\)
- \(\left(\frac{g}{f}\right)(x) = \frac{1 - 6x}{8x + 3}\)
I hope this detailed solution helps you understand how to find the domains and the resulting functions!
### Part (a): Finding the Domains
#### Domain of \( f \)
The function \( f \) is defined as \( f(x) = 8x + 3 \). This is a linear function, which is defined for all real numbers. The domain of \( f \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( g \)
The function \( g \) is defined as \( g(x) = 1 - 6x \). This is also a linear function, which is defined for all real numbers. The domain of \( g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f + g \)
The function \((f + g)(x)\) is the sum of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f + g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f - g \)
The function \((f - g)(x)\) is the difference of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f - g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( fg \)
The function \((fg)(x)\) is the product of two linear functions, which results in a quadratic function. A quadratic function is defined for all real numbers. The domain of \( fg \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( ff \)
The function \((ff)(x)\) means the function \( f \) composed with itself, \( f(f(x)) \). Since \( f \) is defined for all real numbers and its output is also a real number, the domain of \( ff \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \(\frac{f}{g}\)
The function \(\left(\frac{f}{g}\right)(x)\) is the quotient of \( f \) and \( g \). This quotient is defined for all \( x \) except where \( g(x) = 0 \).
[tex]\[ g(x) = 1 - 6x = 0 \implies x = \frac{1}{6} \][/tex]
So, the domain of \(\frac{f}{g}\) is:
[tex]\[ (-\infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty) \][/tex]
#### Domain of \(\frac{g}{f}\)
The function \(\left(\frac{g}{f}\right)(x)\) is the quotient of \( g \) and \( f \). This quotient is defined for all \( x \) except where \( f(x) = 0 \).
[tex]\[ f(x) = 8x + 3 = 0 \implies x = -\frac{3}{8} \][/tex]
So, the domain of \(\frac{g}{f}\) is:
[tex]\[ (-\infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty) \][/tex]
### Part (b): Finding the Functions
Now, let's find the expressions for each function.
#### \((f + g)(x)\)
[tex]\[ (f + g)(x) = f(x) + g(x) = (8x + 3) + (1 - 6x) = 2x + 4 \][/tex]
#### \((f - g)(x)\)
[tex]\[ (f - g)(x) = f(x) - g(x) = (8x + 3) - (1 - 6x) = 8x + 3 - 1 + 6x = 14x + 2 \][/tex]
#### \((fg)(x)\)
[tex]\[ (fg)(x) = f(x) \cdot g(x) = (8x + 3)(1 - 6x) = 8x - 48x^2 + 3 - 18x = -48x^2 - 10x + 3 \][/tex]
#### \((ff)(x)\)
[tex]\[ (ff)(x) = f(f(x)) \][/tex]
[tex]\[ f(x) = 8x + 3 \][/tex]
[tex]\[ f(f(x)) = f(8x + 3) = 8(8x + 3) + 3 = 64x + 24 + 3 = 64x + 27 \][/tex]
#### \(\left(\frac{f}{g}\right)(x)\)
[tex]\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{8x + 3}{1 - 6x} \][/tex]
#### \(\left(\frac{g}{f}\right)(x)\)
[tex]\[ \left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{1 - 6x}{8x + 3} \][/tex]
In summary:
### Part (a): Domains
- Domain of \( f \): \((- \infty, \infty)\)
- Domain of \( g \): \((- \infty, \infty)\)
- Domain of \( f + g \): \((- \infty, \infty)\)
- Domain of \( f - g \): \((- \infty, \infty)\)
- Domain of \( fg \): \((- \infty, \infty)\)
- Domain of \( ff \): \((- \infty, \infty)\)
- Domain of \(\frac{f}{g}\): \((- \infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty)\)
- Domain of \(\frac{g}{f}\): \((- \infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty)\)
### Part (b): Functions
- \((f + g)(x) = 2x + 4\)
- \((f - g)(x) = 14x + 2\)
- \((fg)(x) = -48x^2 - 10x + 3\)
- \((ff)(x) = 64x + 27\)
- \(\left(\frac{f}{g}\right)(x) = \frac{8x + 3}{1 - 6x}\)
- \(\left(\frac{g}{f}\right)(x) = \frac{1 - 6x}{8x + 3}\)
I hope this detailed solution helps you understand how to find the domains and the resulting functions!
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.