Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the linear function \( w(x) = -20x + 180 \) that models the amount of water in the aquarium tank over time \( x \), let's analyze the problem step-by-step:
1. Identify the Function and Variables:
- The linear function given is \( w(x) = -20x + 180 \), where:
- \( w(x) \) represents the amount of water in the tank in gallons.
- \( x \) represents the time in hours.
2. Understanding the Problem:
- The tank starts with 180 gallons of water.
- Water is being drained at a rate of 20 gallons per hour.
3. Determine When the Tank is Empty:
- To find the time \( x \) when the tank is empty, we need to solve for \( x \) when \( w(x) = 0 \) (i.e., no water left).
- Set the equation equal to zero:
[tex]\[ -20x + 180 = 0 \][/tex]
- Solve for \( x \):
[tex]\[ -20x = -180 \][/tex]
[tex]\[ x = \frac{180}{20} \][/tex]
[tex]\[ x = 9 \][/tex]
- This means the tank will be empty after 9 hours.
4. Define the Domain:
- The domain represents the valid values of \( x \) within the context of the problem.
- Since \( x \) cannot be negative (time cannot go backward) and the tank only has water up to 9 hours, \( x \) ranges from \( 0 \) to \( 9 \).
Therefore, the domain of the function \( w(x) = -20x + 180 \) is:
[tex]\[ [0, 9] \][/tex]
The correct answer is:
[tex]\[ [0, 9] \][/tex]
1. Identify the Function and Variables:
- The linear function given is \( w(x) = -20x + 180 \), where:
- \( w(x) \) represents the amount of water in the tank in gallons.
- \( x \) represents the time in hours.
2. Understanding the Problem:
- The tank starts with 180 gallons of water.
- Water is being drained at a rate of 20 gallons per hour.
3. Determine When the Tank is Empty:
- To find the time \( x \) when the tank is empty, we need to solve for \( x \) when \( w(x) = 0 \) (i.e., no water left).
- Set the equation equal to zero:
[tex]\[ -20x + 180 = 0 \][/tex]
- Solve for \( x \):
[tex]\[ -20x = -180 \][/tex]
[tex]\[ x = \frac{180}{20} \][/tex]
[tex]\[ x = 9 \][/tex]
- This means the tank will be empty after 9 hours.
4. Define the Domain:
- The domain represents the valid values of \( x \) within the context of the problem.
- Since \( x \) cannot be negative (time cannot go backward) and the tank only has water up to 9 hours, \( x \) ranges from \( 0 \) to \( 9 \).
Therefore, the domain of the function \( w(x) = -20x + 180 \) is:
[tex]\[ [0, 9] \][/tex]
The correct answer is:
[tex]\[ [0, 9] \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.