Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factor the trinomial \( 2x^2 + 8x + 6 \) completely, let's go through the steps:
1. Identify the coefficients:
The trinomial is in the standard form \( ax^2 + bx + c \) where \( a = 2 \), \( b = 8 \), and \( c = 6 \).
2. Look for the greatest common factor (GCF):
First, check if there is a GCF among all the terms. Here, the GCF is 2. Factor out the GCF:
[tex]\[ 2x^2 + 8x + 6 = 2(x^2 + 4x + 3) \][/tex]
3. Factor the quadratic expression inside the parentheses:
Now, focus on factoring \( x^2 + 4x + 3 \).
- Find two numbers that multiply to the constant term \( 3 \) and add up to the linear coefficient \( 4 \).
- These numbers are \( 1 \) and \( 3 \), because \( 1 \times 3 = 3 \) and \( 1 + 3 = 4 \).
4. Write the expression as a product of binomials:
Rewrite \( x^2 + 4x + 3 \) as:
[tex]\[ x^2 + 4x + 3 = (x + 1)(x + 3) \][/tex]
5. Combine with the GCF:
Now, include the GCF we factored out earlier:
[tex]\[ 2(x^2 + 4x + 3) = 2(x + 1)(x + 3) \][/tex]
Thus, the trinomial \( 2x^2 + 8x + 6 \) factors completely as:
[tex]\[ 2(x + 1)(x + 3) \][/tex]
Answer choice: [tex]\( \boxed{C} \)[/tex] [tex]\( 2(x + 3)(x + 1) \)[/tex] ───────────────────────────────────────────────────────
1. Identify the coefficients:
The trinomial is in the standard form \( ax^2 + bx + c \) where \( a = 2 \), \( b = 8 \), and \( c = 6 \).
2. Look for the greatest common factor (GCF):
First, check if there is a GCF among all the terms. Here, the GCF is 2. Factor out the GCF:
[tex]\[ 2x^2 + 8x + 6 = 2(x^2 + 4x + 3) \][/tex]
3. Factor the quadratic expression inside the parentheses:
Now, focus on factoring \( x^2 + 4x + 3 \).
- Find two numbers that multiply to the constant term \( 3 \) and add up to the linear coefficient \( 4 \).
- These numbers are \( 1 \) and \( 3 \), because \( 1 \times 3 = 3 \) and \( 1 + 3 = 4 \).
4. Write the expression as a product of binomials:
Rewrite \( x^2 + 4x + 3 \) as:
[tex]\[ x^2 + 4x + 3 = (x + 1)(x + 3) \][/tex]
5. Combine with the GCF:
Now, include the GCF we factored out earlier:
[tex]\[ 2(x^2 + 4x + 3) = 2(x + 1)(x + 3) \][/tex]
Thus, the trinomial \( 2x^2 + 8x + 6 \) factors completely as:
[tex]\[ 2(x + 1)(x + 3) \][/tex]
Answer choice: [tex]\( \boxed{C} \)[/tex] [tex]\( 2(x + 3)(x + 1) \)[/tex] ───────────────────────────────────────────────────────
The answer is C. Because you 1st need to factor out a 2 from 2x^2+8x+6.
Then you should be able to get 2(x^2+4x+3).
With (x^2+4x+3), you have to find to numbers that multiply to equal 3, and add up to equal 4x. Those numbers are 3 and 1.
The final factored form should be
2(x+3)(x+1).
Then you should be able to get 2(x^2+4x+3).
With (x^2+4x+3), you have to find to numbers that multiply to equal 3, and add up to equal 4x. Those numbers are 3 and 1.
The final factored form should be
2(x+3)(x+1).
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.