Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to use the appropriate trigonometric ratio based on the given angle and the length of the board.
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.