Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the volume of a regular triangular pyramid with the given dimensions, follow these steps:
### 1. Calculate the Area of the Triangular Base
To find the area of the triangular base, use the formula for the area of a triangle:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Here, the base \( b \) of the triangular base is 10 cm and the altitude \( h_b \) of this triangle is approximately 8.7 cm. Substituting these values into the formula gives:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 10 \, \text{cm} \times 8.7 \, \text{cm} \][/tex]
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 87 \, \text{cm}^2 \][/tex]
[tex]\[ A_{\text{base}} = 43.5 \, \text{cm}^2 \][/tex]
So, the area of the triangular base \( A_{\text{base}} \) is \( 43.5 \, \text{cm}^2 \).
### 2. Calculate the Volume of the Pyramid
The formula for the volume \( V \) of a pyramid is:
[tex]\[ V = \frac{1}{3} \times A_{\text{base}} \times h \][/tex]
Here, \( A_{\text{base}} \) is the area of the triangular base which we have already calculated as \( 43.5 \, \text{cm}^2 \), and \( h \) is the height of the pyramid, which is 12 cm. Substituting these values into the formula gives:
[tex]\[ V = \frac{1}{3} \times 43.5 \, \text{cm}^2 \times 12 \, \text{cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 522 \, \text{cm}^3 \][/tex]
[tex]\[ V = 174 \, \text{cm}^3 \][/tex]
Therefore, the volume of the regular triangular pyramid is [tex]\( 174 \, \text{cm}^3 \)[/tex].
### 1. Calculate the Area of the Triangular Base
To find the area of the triangular base, use the formula for the area of a triangle:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Here, the base \( b \) of the triangular base is 10 cm and the altitude \( h_b \) of this triangle is approximately 8.7 cm. Substituting these values into the formula gives:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 10 \, \text{cm} \times 8.7 \, \text{cm} \][/tex]
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 87 \, \text{cm}^2 \][/tex]
[tex]\[ A_{\text{base}} = 43.5 \, \text{cm}^2 \][/tex]
So, the area of the triangular base \( A_{\text{base}} \) is \( 43.5 \, \text{cm}^2 \).
### 2. Calculate the Volume of the Pyramid
The formula for the volume \( V \) of a pyramid is:
[tex]\[ V = \frac{1}{3} \times A_{\text{base}} \times h \][/tex]
Here, \( A_{\text{base}} \) is the area of the triangular base which we have already calculated as \( 43.5 \, \text{cm}^2 \), and \( h \) is the height of the pyramid, which is 12 cm. Substituting these values into the formula gives:
[tex]\[ V = \frac{1}{3} \times 43.5 \, \text{cm}^2 \times 12 \, \text{cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 522 \, \text{cm}^3 \][/tex]
[tex]\[ V = 174 \, \text{cm}^3 \][/tex]
Therefore, the volume of the regular triangular pyramid is [tex]\( 174 \, \text{cm}^3 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.