Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let's solve the equation step-by-step:
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.