Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's go through this problem step-by-step to determine the total area if we use 5 smaller pieces from the first cardboard and 3 smaller pieces from the second cardboard.
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.