Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, we need to determine the number of elements in the intersection of two sets: \(P\) and \(Q\).
1. Define the sets:
- Set \(P\) is the set of multiples of \(6\) that are less than \(50\).
- Set \(Q\) is the set of multiples of \(12\) that are less than \(50\).
2. List the elements of each set:
- The multiples of \(6\) less than \(50\) are:
\(6, 12, 18, 24, 30, 36, 42, 48\)
Hence, \(P = \{6, 12, 18, 24, 30, 36, 42, 48\}\)
- The multiples of \(12\) less than \(50\) are:
\(12, 24, 36, 48\)
Hence, \(Q = \{12, 24, 36, 48\}\)
3. Find the intersection of \(P\) and \(Q\):
- The intersection of two sets includes only the elements that are present in both sets.
- The common elements in both \(P\) and \(Q\) are:
\(12, 24, 36, 48\)
Therefore, \(P \cap Q = \{12, 24, 36, 48\}\)
4. Count the number of elements in the intersection:
- The number of elements (also known as the cardinality) in the set \(P \cap Q\) is given by counting the elements in \(\{12, 24, 36, 48\}\).
- There are \(4\) elements in the intersection set.
5. Conclusion:
- The number of elements in the intersection of sets \(P\) and \(Q\) is \(4\).
Thus, [tex]\(n(P \cap Q) = 4\)[/tex].
1. Define the sets:
- Set \(P\) is the set of multiples of \(6\) that are less than \(50\).
- Set \(Q\) is the set of multiples of \(12\) that are less than \(50\).
2. List the elements of each set:
- The multiples of \(6\) less than \(50\) are:
\(6, 12, 18, 24, 30, 36, 42, 48\)
Hence, \(P = \{6, 12, 18, 24, 30, 36, 42, 48\}\)
- The multiples of \(12\) less than \(50\) are:
\(12, 24, 36, 48\)
Hence, \(Q = \{12, 24, 36, 48\}\)
3. Find the intersection of \(P\) and \(Q\):
- The intersection of two sets includes only the elements that are present in both sets.
- The common elements in both \(P\) and \(Q\) are:
\(12, 24, 36, 48\)
Therefore, \(P \cap Q = \{12, 24, 36, 48\}\)
4. Count the number of elements in the intersection:
- The number of elements (also known as the cardinality) in the set \(P \cap Q\) is given by counting the elements in \(\{12, 24, 36, 48\}\).
- There are \(4\) elements in the intersection set.
5. Conclusion:
- The number of elements in the intersection of sets \(P\) and \(Q\) is \(4\).
Thus, [tex]\(n(P \cap Q) = 4\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.