Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\), we can break the analysis into two segments: one for \(x\) in the interval \([-1, 0]\) and one for \(x\) in the interval \([0, 1]\).
### For \(0 \le x \le 1\):
In this interval, \(x\) is non-negative, so \(|x| = x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot x = x^2. \][/tex]
We need to find the area under the curve \(y = x^2\) from \(x = 0\) to \(x = 1\). We do this by integrating \(x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{positive}} = \int_{0}^{1} x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}. \][/tex]
### For \(-1 \le x < 0\):
In this interval, \(x\) is negative, so \(|x| = -x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot (-x) = -x^2. \][/tex]
We need to find the area under the curve \(y = -x^2\) from \(x = -1\) to \(x = 0\). We do this by integrating \(-x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{negative}} = \int_{-1}^{0} -x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{-1}^{0} -x^2 \, dx = -\int_{-1}^{0} x^2 \, dx = -\left[\frac{x^3}{3}\right]_{-1}^{0} = -\left(\frac{0^3}{3} - \frac{(-1)^3}{3}\right) = -\left(0 - \left(-\frac{1}{3}\right)\right) = -\left(0 + \frac{1}{3}\right) = -\frac{1}{3}. \][/tex]
### Total Area Bounded:
The total area bounded by the curve and the \(x\)-axis in the interval \([-1, 1]\) is obtained by adding the absolute values of the areas from the two segments:
[tex]\[ \text{Total Area} = \text{Area}_{\text{positive}} + \text{Area}_{\text{negative}} = \frac{1}{3} + \left(-\frac{1}{3}\right) = 0. \][/tex]
Hence, the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\) is:
[tex]\( \boxed{0} \)[/tex].
### For \(0 \le x \le 1\):
In this interval, \(x\) is non-negative, so \(|x| = x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot x = x^2. \][/tex]
We need to find the area under the curve \(y = x^2\) from \(x = 0\) to \(x = 1\). We do this by integrating \(x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{positive}} = \int_{0}^{1} x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}. \][/tex]
### For \(-1 \le x < 0\):
In this interval, \(x\) is negative, so \(|x| = -x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot (-x) = -x^2. \][/tex]
We need to find the area under the curve \(y = -x^2\) from \(x = -1\) to \(x = 0\). We do this by integrating \(-x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{negative}} = \int_{-1}^{0} -x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{-1}^{0} -x^2 \, dx = -\int_{-1}^{0} x^2 \, dx = -\left[\frac{x^3}{3}\right]_{-1}^{0} = -\left(\frac{0^3}{3} - \frac{(-1)^3}{3}\right) = -\left(0 - \left(-\frac{1}{3}\right)\right) = -\left(0 + \frac{1}{3}\right) = -\frac{1}{3}. \][/tex]
### Total Area Bounded:
The total area bounded by the curve and the \(x\)-axis in the interval \([-1, 1]\) is obtained by adding the absolute values of the areas from the two segments:
[tex]\[ \text{Total Area} = \text{Area}_{\text{positive}} + \text{Area}_{\text{negative}} = \frac{1}{3} + \left(-\frac{1}{3}\right) = 0. \][/tex]
Hence, the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\) is:
[tex]\( \boxed{0} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.