At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the given matrix:
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.
1. Orthogonal Matrix:
A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.
Calculate the transpose of \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Now, compute \( A \cdot A^T \):
[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]
Since \( A \cdot A^T = I \), \( A \) is orthogonal.
2. Hermitian Matrix:
A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.
For our real matrix \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Clearly, \( A \neq A^T \), so \( A \) is not hermitian.
3. Symmetric Matrix:
A matrix \( A \) is symmetric if \( A = A^T \).
As shown above,
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Since \( A \neq A^T \), \( A \) is not symmetric.
4. Antisymmetric Matrix:
A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).
Calculate \(-A^T\):
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Comparing \( A \) with \(-A^T\):
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.
Summarizing, the matrix
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False
Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.
1. Orthogonal Matrix:
A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.
Calculate the transpose of \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Now, compute \( A \cdot A^T \):
[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]
Since \( A \cdot A^T = I \), \( A \) is orthogonal.
2. Hermitian Matrix:
A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.
For our real matrix \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Clearly, \( A \neq A^T \), so \( A \) is not hermitian.
3. Symmetric Matrix:
A matrix \( A \) is symmetric if \( A = A^T \).
As shown above,
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Since \( A \neq A^T \), \( A \) is not symmetric.
4. Antisymmetric Matrix:
A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).
Calculate \(-A^T\):
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Comparing \( A \) with \(-A^T\):
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.
Summarizing, the matrix
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False
Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.