Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the inequality \( 2(19x + 18) > 4 + 11x \), we will proceed step by step to isolate \( x \).
1. Expand the left-hand side of the inequality:
[tex]\[ 2(19x + 18) = 2 \cdot 19x + 2 \cdot 18 = 38x + 36 \][/tex]
Therefore, the inequality becomes:
[tex]\[ 38x + 36 > 4 + 11x \][/tex]
2. Move all terms involving \( x \) to one side and constant terms to the other side:
Subtract \( 11x \) from both sides:
[tex]\[ 38x + 36 - 11x > 4 + 11x - 11x \][/tex]
Simplifies to:
[tex]\[ 27x + 36 > 4 \][/tex]
3. Isolate the term with \( x \):
Subtract 36 from both sides:
[tex]\[ 27x + 36 - 36 > 4 - 36 \][/tex]
Simplifies to:
[tex]\[ 27x > -32 \][/tex]
4. Solve for \( x \) by dividing both sides by 27:
[tex]\[ x > \frac{-32}{27} \][/tex]
Therefore, the solution to the inequality \( 2(19x + 18) > 4 + 11x \) is:
[tex]\[ x > \frac{-32}{27} \][/tex]
In interval notation, this is written as:
[tex]\[ \left( \frac{-32}{27}, \infty \right) \][/tex]
So, the interval notation for the solution is [tex]\(\left( \frac{-32}{27}, \infty \right)\)[/tex].
1. Expand the left-hand side of the inequality:
[tex]\[ 2(19x + 18) = 2 \cdot 19x + 2 \cdot 18 = 38x + 36 \][/tex]
Therefore, the inequality becomes:
[tex]\[ 38x + 36 > 4 + 11x \][/tex]
2. Move all terms involving \( x \) to one side and constant terms to the other side:
Subtract \( 11x \) from both sides:
[tex]\[ 38x + 36 - 11x > 4 + 11x - 11x \][/tex]
Simplifies to:
[tex]\[ 27x + 36 > 4 \][/tex]
3. Isolate the term with \( x \):
Subtract 36 from both sides:
[tex]\[ 27x + 36 - 36 > 4 - 36 \][/tex]
Simplifies to:
[tex]\[ 27x > -32 \][/tex]
4. Solve for \( x \) by dividing both sides by 27:
[tex]\[ x > \frac{-32}{27} \][/tex]
Therefore, the solution to the inequality \( 2(19x + 18) > 4 + 11x \) is:
[tex]\[ x > \frac{-32}{27} \][/tex]
In interval notation, this is written as:
[tex]\[ \left( \frac{-32}{27}, \infty \right) \][/tex]
So, the interval notation for the solution is [tex]\(\left( \frac{-32}{27}, \infty \right)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.