Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the second derivative \(\frac{d^2 y}{d x^2}\) of the function \(y = \sqrt[5]{x}\), follow these steps:
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.