Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To show that quadrilateral KITE is a kite using the given vertices \( K(0, -2) \), \( I(1, 2) \), \( T(7, 5) \), and \( E(4, -1) \), we follow these steps:
1. Calculate the lengths of the sides:
- Length \(KI\):
The distance between \(K(0, -2)\) and \(I(1, 2)\) is given by:
[tex]\[ KI = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.12 \][/tex]
- Length \(IT\):
The distance between \(I(1, 2)\) and \(T(7, 5)\) is given by:
[tex]\[ IT = \sqrt{(7 - 1)^2 + (5 - 2)^2} = \sqrt{6^2 + 3^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.71 \][/tex]
- Length \(TE\):
The distance between \(T(7, 5)\) and \(E(4, -1)\) is given by:
[tex]\[ TE = \sqrt{(4 - 7)^2 + (-1 - 5)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.71 \][/tex]
- Length \(EK\):
The distance between \(E(4, -1)\) and \(K(0, -2)\) is given by:
[tex]\[ EK = \sqrt{(0 - 4)^2 + (-2 - (-1))^2} = \sqrt{(-4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.12 \][/tex]
2. Check if KITE is a kite:
A kite is defined as a quadrilateral with two pairs of adjacent sides that are equal in length. In this case:
- \(KI \approx 4.12\)
- \(IT \approx 6.71\)
- \(TE \approx 6.71\)
- \(EK \approx 4.12\)
We observe that:
- \(KI = EK \approx 4.12\)
- \(IT = TE \approx 6.71\)
Since \(KITE\) has two pairs of adjacent sides that are equal, quadrilateral KITE is indeed a kite.
In summary:
- \(KI = \sqrt{17}\)
- \(IT = \sqrt{45}\)
- \(TE = \sqrt{45}\)
- \(EK = \sqrt{17}\)
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal in length.
1. Calculate the lengths of the sides:
- Length \(KI\):
The distance between \(K(0, -2)\) and \(I(1, 2)\) is given by:
[tex]\[ KI = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.12 \][/tex]
- Length \(IT\):
The distance between \(I(1, 2)\) and \(T(7, 5)\) is given by:
[tex]\[ IT = \sqrt{(7 - 1)^2 + (5 - 2)^2} = \sqrt{6^2 + 3^2} = \sqrt{36 + 9} = \sqrt{45} \approx 6.71 \][/tex]
- Length \(TE\):
The distance between \(T(7, 5)\) and \(E(4, -1)\) is given by:
[tex]\[ TE = \sqrt{(4 - 7)^2 + (-1 - 5)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} \approx 6.71 \][/tex]
- Length \(EK\):
The distance between \(E(4, -1)\) and \(K(0, -2)\) is given by:
[tex]\[ EK = \sqrt{(0 - 4)^2 + (-2 - (-1))^2} = \sqrt{(-4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.12 \][/tex]
2. Check if KITE is a kite:
A kite is defined as a quadrilateral with two pairs of adjacent sides that are equal in length. In this case:
- \(KI \approx 4.12\)
- \(IT \approx 6.71\)
- \(TE \approx 6.71\)
- \(EK \approx 4.12\)
We observe that:
- \(KI = EK \approx 4.12\)
- \(IT = TE \approx 6.71\)
Since \(KITE\) has two pairs of adjacent sides that are equal, quadrilateral KITE is indeed a kite.
In summary:
- \(KI = \sqrt{17}\)
- \(IT = \sqrt{45}\)
- \(TE = \sqrt{45}\)
- \(EK = \sqrt{17}\)
Therefore, KITE is a kite because it has two pairs of adjacent sides that are equal in length.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.