Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the expression \((f+g)(x)\), we need to add the given functions \(f(x)\) and \(g(x)\) together. Let's break this down step by step.
Given:
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
We need to add these functions together term by term.
1. First, identify the powers of \(x\) in each function and their coefficients:
For \(f(x)\):
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
- Coefficient of \(x^2\): \(4\)
- Coefficient of \(x\): \(7\)
- Constant term: \(-3\)
For \(g(x)\):
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
- Coefficient of \(x^3\): \(6\)
- Coefficient of \(x^2\): \(-7\)
- Constant term: \(-5\)
2. Next, add the coefficients of terms with the same powers of \(x\):
- For \(x^3\):
[tex]\[ \text{Coefficient of } x^3 = 6 \][/tex]
- For \(x^2\):
[tex]\[ \text{Coefficient of } x^2 = 4 - 7 = -3 \][/tex]
- For \(x\):
[tex]\[ \text{Coefficient of } x = 7 \][/tex]
- For the constant term:
[tex]\[ \text{Constant term} = -3 - 5 = -8 \][/tex]
3. Combine these results to write \((f+g)(x)\):
So, \((f+g)(x)\) is:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{6x^3 - 3x^2 + 7x - 8} \][/tex]
Comparing our result with the given options, we see that it matches option A:
[tex]\[ (f+g)(x)=6 x^3-3 x^2+7 x-8 \][/tex]
Therefore, the correct choice is:
A. [tex]\((f+g)(x)=6 x^3-3 x^2+7 x-8\)[/tex]
Given:
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
We need to add these functions together term by term.
1. First, identify the powers of \(x\) in each function and their coefficients:
For \(f(x)\):
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
- Coefficient of \(x^2\): \(4\)
- Coefficient of \(x\): \(7\)
- Constant term: \(-3\)
For \(g(x)\):
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
- Coefficient of \(x^3\): \(6\)
- Coefficient of \(x^2\): \(-7\)
- Constant term: \(-5\)
2. Next, add the coefficients of terms with the same powers of \(x\):
- For \(x^3\):
[tex]\[ \text{Coefficient of } x^3 = 6 \][/tex]
- For \(x^2\):
[tex]\[ \text{Coefficient of } x^2 = 4 - 7 = -3 \][/tex]
- For \(x\):
[tex]\[ \text{Coefficient of } x = 7 \][/tex]
- For the constant term:
[tex]\[ \text{Constant term} = -3 - 5 = -8 \][/tex]
3. Combine these results to write \((f+g)(x)\):
So, \((f+g)(x)\) is:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{6x^3 - 3x^2 + 7x - 8} \][/tex]
Comparing our result with the given options, we see that it matches option A:
[tex]\[ (f+g)(x)=6 x^3-3 x^2+7 x-8 \][/tex]
Therefore, the correct choice is:
A. [tex]\((f+g)(x)=6 x^3-3 x^2+7 x-8\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.