Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve the given problem step by step.
We are given the roots of the quadratic equation \(3x^2 - 2mx + 2n = 0\) as \(x = 2\) and \(x = 3\). We will use these roots to find the values of \(m\) and \(n\).
### Step 1: Understand the Relationship of Roots and Coefficients
For a quadratic equation \(ax^2 + bx + c = 0\), Vieta's formulas tell us the relationships between the roots and the coefficients:
1. The sum of the roots \((p + q) = -\frac{b}{a}\)
2. The product of the roots \((pq) = \frac{c}{a}\)
In the quadratic equation \(3x^2 - 2mx + 2n = 0\), we have:
- \(a = 3\)
- \(b = -2m\)
- \(c = 2n\)
### Step 2: Use the Sum of the Roots
Given roots \(x_1 = 2\) and \(x_2 = 3\):
[tex]\[ x_1 + x_2 = 2 + 3 = 5 \][/tex]
According to Vieta's formulas for the sum of the roots:
[tex]\[ x_1 + x_2 = -\frac{b}{a} \][/tex]
[tex]\[ 5 = -\frac{-2m}{3} \][/tex]
Solving for \(m\):
[tex]\[ 5 = \frac{2m}{3} \][/tex]
[tex]\[ 5 \times 3 = 2m \][/tex]
[tex]\[ 15 = 2m \][/tex]
[tex]\[ m = \frac{15}{2} \][/tex]
[tex]\[ m = 7.5 \][/tex]
### Step 3: Use the Product of the Roots
The product of the roots \(x_1 \cdot x_2 = 2 \cdot 3 = 6\).
According to Vieta's formulas for the product of the roots:
[tex]\[ x_1 x_2 = \frac{c}{a} \][/tex]
[tex]\[ 6 = \frac{2n}{3} \][/tex]
Solving for \(n\):
[tex]\[ 6 \times 3 = 2n \][/tex]
[tex]\[ 18 = 2n \][/tex]
[tex]\[ n = \frac{18}{2} \][/tex]
[tex]\[ n = 9 \][/tex]
### Conclusion
By using Vieta's formulas and the given roots, we found:
- The value of \(m\) is \(7.5\)
- The value of \(n\) is \(9\)
Thus, [tex]\(m = 7.5\)[/tex] and [tex]\(n = 9\)[/tex].
We are given the roots of the quadratic equation \(3x^2 - 2mx + 2n = 0\) as \(x = 2\) and \(x = 3\). We will use these roots to find the values of \(m\) and \(n\).
### Step 1: Understand the Relationship of Roots and Coefficients
For a quadratic equation \(ax^2 + bx + c = 0\), Vieta's formulas tell us the relationships between the roots and the coefficients:
1. The sum of the roots \((p + q) = -\frac{b}{a}\)
2. The product of the roots \((pq) = \frac{c}{a}\)
In the quadratic equation \(3x^2 - 2mx + 2n = 0\), we have:
- \(a = 3\)
- \(b = -2m\)
- \(c = 2n\)
### Step 2: Use the Sum of the Roots
Given roots \(x_1 = 2\) and \(x_2 = 3\):
[tex]\[ x_1 + x_2 = 2 + 3 = 5 \][/tex]
According to Vieta's formulas for the sum of the roots:
[tex]\[ x_1 + x_2 = -\frac{b}{a} \][/tex]
[tex]\[ 5 = -\frac{-2m}{3} \][/tex]
Solving for \(m\):
[tex]\[ 5 = \frac{2m}{3} \][/tex]
[tex]\[ 5 \times 3 = 2m \][/tex]
[tex]\[ 15 = 2m \][/tex]
[tex]\[ m = \frac{15}{2} \][/tex]
[tex]\[ m = 7.5 \][/tex]
### Step 3: Use the Product of the Roots
The product of the roots \(x_1 \cdot x_2 = 2 \cdot 3 = 6\).
According to Vieta's formulas for the product of the roots:
[tex]\[ x_1 x_2 = \frac{c}{a} \][/tex]
[tex]\[ 6 = \frac{2n}{3} \][/tex]
Solving for \(n\):
[tex]\[ 6 \times 3 = 2n \][/tex]
[tex]\[ 18 = 2n \][/tex]
[tex]\[ n = \frac{18}{2} \][/tex]
[tex]\[ n = 9 \][/tex]
### Conclusion
By using Vieta's formulas and the given roots, we found:
- The value of \(m\) is \(7.5\)
- The value of \(n\) is \(9\)
Thus, [tex]\(m = 7.5\)[/tex] and [tex]\(n = 9\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.