Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze each equation and inequality to determine if they have a solution set that is not empty.
### 1. \( 2 |x-8| + 6 < 4 \)
First, isolate the absolute value term:
[tex]\[ 2 |x-8| + 6 < 4 \][/tex]
Subtract 6 from both sides:
[tex]\[ 2 |x-8| < -2 \][/tex]
Divide both sides by 2:
[tex]\[ |x-8| < -1 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot be less than -1. Therefore, this inequality has no solution.
### 2. \( |2x-1| + 5 = 4 \)
First, isolate the absolute value term:
[tex]\[ |2x-1| + 5 = 4 \][/tex]
Subtract 5 from both sides:
[tex]\[ |2x-1| = -1 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot equal -1. Therefore, this equation has no solution.
### 3. \( -2 |x-2| + 3 > 9 \)
First, isolate the absolute value term:
[tex]\[ -2 |x-2| + 3 > 9 \][/tex]
Subtract 3 from both sides:
[tex]\[ -2 |x-2| > 6 \][/tex]
Divide both sides by -2 (and remember to reverse the inequality):
[tex]\[ |x-2| < -3 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot be less than -3. Therefore, this inequality has no solution.
### 4. \( |3x-1| - 5 = -1 \)
First, isolate the absolute value term:
[tex]\[ |3x-1| - 5 = -1 \][/tex]
Add 5 to both sides:
[tex]\[ |3x-1| = 4 \][/tex]
The absolute value equation \( |3x-1| = 4 \) can be split into two cases:
[tex]\[ 3x-1 = 4 \quad \text{or} \quad 3x-1 = -4 \][/tex]
Case 1: \( 3x-1 = 4 \)
[tex]\[ 3x = 5 \][/tex]
[tex]\[ x = \frac{5}{3} \][/tex]
Case 2: \( 3x-1 = -4 \)
[tex]\[ 3x = -3 \][/tex]
[tex]\[ x = -1 \][/tex]
Thus, the solutions to the equation \( |3x-1| = 4 \) are \( x = \frac{5}{3} \) and \( x = -1 \), which means this equation has a solution set that is not empty.
### Conclusion
The absolute value equation or inequality with a solution set that is NOT the empty set is:
[tex]\[ |3x-1| - 5 = -1 \][/tex]
### 1. \( 2 |x-8| + 6 < 4 \)
First, isolate the absolute value term:
[tex]\[ 2 |x-8| + 6 < 4 \][/tex]
Subtract 6 from both sides:
[tex]\[ 2 |x-8| < -2 \][/tex]
Divide both sides by 2:
[tex]\[ |x-8| < -1 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot be less than -1. Therefore, this inequality has no solution.
### 2. \( |2x-1| + 5 = 4 \)
First, isolate the absolute value term:
[tex]\[ |2x-1| + 5 = 4 \][/tex]
Subtract 5 from both sides:
[tex]\[ |2x-1| = -1 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot equal -1. Therefore, this equation has no solution.
### 3. \( -2 |x-2| + 3 > 9 \)
First, isolate the absolute value term:
[tex]\[ -2 |x-2| + 3 > 9 \][/tex]
Subtract 3 from both sides:
[tex]\[ -2 |x-2| > 6 \][/tex]
Divide both sides by -2 (and remember to reverse the inequality):
[tex]\[ |x-2| < -3 \][/tex]
The absolute value of any expression is always non-negative, meaning it cannot be less than -3. Therefore, this inequality has no solution.
### 4. \( |3x-1| - 5 = -1 \)
First, isolate the absolute value term:
[tex]\[ |3x-1| - 5 = -1 \][/tex]
Add 5 to both sides:
[tex]\[ |3x-1| = 4 \][/tex]
The absolute value equation \( |3x-1| = 4 \) can be split into two cases:
[tex]\[ 3x-1 = 4 \quad \text{or} \quad 3x-1 = -4 \][/tex]
Case 1: \( 3x-1 = 4 \)
[tex]\[ 3x = 5 \][/tex]
[tex]\[ x = \frac{5}{3} \][/tex]
Case 2: \( 3x-1 = -4 \)
[tex]\[ 3x = -3 \][/tex]
[tex]\[ x = -1 \][/tex]
Thus, the solutions to the equation \( |3x-1| = 4 \) are \( x = \frac{5}{3} \) and \( x = -1 \), which means this equation has a solution set that is not empty.
### Conclusion
The absolute value equation or inequality with a solution set that is NOT the empty set is:
[tex]\[ |3x-1| - 5 = -1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.