Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To properly solve the problem \( 6x^2y^4(5x^2 - 3x^2y^2 + 4y^2) \), we will distribute \( 6x^2y^4 \) to each term inside the parentheses. Let's go through this step-by-step.
1. Distribute \( 6x^2y^4 \) to \( 5x^2 \):
[tex]\[ 6x^2y^4 \cdot 5x^2 = 6 \cdot 5 \cdot x^2 \cdot x^2 \cdot y^4 = 30x^4y^4 \][/tex]
2. Distribute \( 6x^2y^4 \) to \(-3x^2y^2\):
[tex]\[ 6x^2y^4 \cdot (-3x^2y^2) = 6 \cdot (-3) \cdot x^2 \cdot x^2 \cdot y^4 \cdot y^2 = -18x^4y^6 \][/tex]
3. Distribute \( 6x^2y^4 \) to \( 4y^2 \):
[tex]\[ 6x^2y^4 \cdot 4y^2 = 6 \cdot 4 \cdot x^2 \cdot y^4 \cdot y^2 = 24x^2y^6 \][/tex]
Now, combine the results:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]
Therefore, the multiplied expression simplifies to:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{30x^4y^4 - 18x^4y^6 + 24x^2y^6} \][/tex]
1. Distribute \( 6x^2y^4 \) to \( 5x^2 \):
[tex]\[ 6x^2y^4 \cdot 5x^2 = 6 \cdot 5 \cdot x^2 \cdot x^2 \cdot y^4 = 30x^4y^4 \][/tex]
2. Distribute \( 6x^2y^4 \) to \(-3x^2y^2\):
[tex]\[ 6x^2y^4 \cdot (-3x^2y^2) = 6 \cdot (-3) \cdot x^2 \cdot x^2 \cdot y^4 \cdot y^2 = -18x^4y^6 \][/tex]
3. Distribute \( 6x^2y^4 \) to \( 4y^2 \):
[tex]\[ 6x^2y^4 \cdot 4y^2 = 6 \cdot 4 \cdot x^2 \cdot y^4 \cdot y^2 = 24x^2y^6 \][/tex]
Now, combine the results:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]
Therefore, the multiplied expression simplifies to:
[tex]\[ 30x^4y^4 - 18x^4y^6 + 24x^2y^6 \][/tex]
Among the given options, the correct answer is:
[tex]\[ \boxed{30x^4y^4 - 18x^4y^6 + 24x^2y^6} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.