Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which set of ordered pairs could be generated by an exponential function, let's check each set of points. An exponential function has the form \(y = a \cdot b^x\) for constants \(a\) and \(b\). Below each set will be analyzed to see if it follows this form.
### Set 1:
[tex]\[ (1, 1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \][/tex]
For this set to follow the form \(y = a \cdot b^x\), the ratio \(\frac{y_{i+1}}{y_i}\) must be constant.
- \(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)
- \(\frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}\)
- \(\frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}\)
These ratios are not constant, so this set does not represent an exponential function.
### Set 2:
[tex]\[ (1, 1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right) \][/tex]
Again, we check the ratios:
- \(\frac{\frac{1}{4}}{1} = \frac{1}{4}\)
- \(\frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}\)
- \(\frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16}\)
These ratios are not constant either, so this set does not represent an exponential function.
### Set 3:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Let's check the ratios for this set:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}\)
- \(\frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}\)
The ratio is constant (\(\frac{1}{2}\)), indicating that each successive term is obtained by multiplying the previous term by \(\frac{1}{2}\). Therefore, this set follows the form \(y = a \cdot b^x\) with \(a = \frac{1}{2}\) and \(b = \frac{1}{2}\), indicating it is exponential.
### Set 4:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right) \][/tex]
Let's check the ratios:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}\)
- \(\frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4}\)
These ratios are not constant, indicating this set does not represent an exponential function.
### Conclusion:
The set of ordered pairs that could be generated by an exponential function is:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Thus, the correct answer is:
[tex]\[ \left( 3 \right) \][/tex]
### Set 1:
[tex]\[ (1, 1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \][/tex]
For this set to follow the form \(y = a \cdot b^x\), the ratio \(\frac{y_{i+1}}{y_i}\) must be constant.
- \(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)
- \(\frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}\)
- \(\frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}\)
These ratios are not constant, so this set does not represent an exponential function.
### Set 2:
[tex]\[ (1, 1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right) \][/tex]
Again, we check the ratios:
- \(\frac{\frac{1}{4}}{1} = \frac{1}{4}\)
- \(\frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}\)
- \(\frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16}\)
These ratios are not constant either, so this set does not represent an exponential function.
### Set 3:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Let's check the ratios for this set:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}\)
- \(\frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}\)
The ratio is constant (\(\frac{1}{2}\)), indicating that each successive term is obtained by multiplying the previous term by \(\frac{1}{2}\). Therefore, this set follows the form \(y = a \cdot b^x\) with \(a = \frac{1}{2}\) and \(b = \frac{1}{2}\), indicating it is exponential.
### Set 4:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right) \][/tex]
Let's check the ratios:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}\)
- \(\frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4}\)
These ratios are not constant, indicating this set does not represent an exponential function.
### Conclusion:
The set of ordered pairs that could be generated by an exponential function is:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Thus, the correct answer is:
[tex]\[ \left( 3 \right) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.