Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain and range of the function \( f(x) = 3^x + 5 \), we need to analyze the behavior of this function step-by-step.
1. Determining the Domain:
- The domain of a function is the set of all possible input values (x-values) for which the function is defined.
- In the given function \( f(x) = 3^x + 5 \), the term \( 3^x \) is defined for all real numbers \( x \).
- Therefore, there are no restrictions on the values of \( x \); it can take any real number.
- Hence, the domain of the function is \((-\infty, \infty)\).
2. Determining the Range:
- The range of a function is the set of all possible output values (y-values).
- Consider the term \( 3^x \):
- For \( x = 0 \), \( 3^0 = 1 \).
- For \( x > 0 \), \( 3^x \) grows exponentially and approaches infinity.
- For \( x < 0 \), \( 3^x \) approaches 0 (but is never negative and never actually reaches 0).
- Since \( 3^x \) is always positive and the smallest it can get is approaching 0 (but never 0), adding 5 to \( 3^x \) means the smallest value \( f(x) \) can approach is 5.
- As \( x \) increases, \( 3^x \) increases without bound, hence \( f(x) \) also grows without bound.
- Therefore, the function \( f(x) \) will take all values greater than 5 but never reach 5.
- Hence, the range of the function is \( (5, \infty) \).
3. Conclusion:
- Domain: \( (-\infty, \infty) \)
- Range: \( (5, \infty) \)
Thus, the correct answer is:
- domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( (5, \infty) \)[/tex]
1. Determining the Domain:
- The domain of a function is the set of all possible input values (x-values) for which the function is defined.
- In the given function \( f(x) = 3^x + 5 \), the term \( 3^x \) is defined for all real numbers \( x \).
- Therefore, there are no restrictions on the values of \( x \); it can take any real number.
- Hence, the domain of the function is \((-\infty, \infty)\).
2. Determining the Range:
- The range of a function is the set of all possible output values (y-values).
- Consider the term \( 3^x \):
- For \( x = 0 \), \( 3^0 = 1 \).
- For \( x > 0 \), \( 3^x \) grows exponentially and approaches infinity.
- For \( x < 0 \), \( 3^x \) approaches 0 (but is never negative and never actually reaches 0).
- Since \( 3^x \) is always positive and the smallest it can get is approaching 0 (but never 0), adding 5 to \( 3^x \) means the smallest value \( f(x) \) can approach is 5.
- As \( x \) increases, \( 3^x \) increases without bound, hence \( f(x) \) also grows without bound.
- Therefore, the function \( f(x) \) will take all values greater than 5 but never reach 5.
- Hence, the range of the function is \( (5, \infty) \).
3. Conclusion:
- Domain: \( (-\infty, \infty) \)
- Range: \( (5, \infty) \)
Thus, the correct answer is:
- domain: [tex]\( (-\infty, \infty) \)[/tex]; range: [tex]\( (5, \infty) \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.